

SPECIAL ISSUE
Design capacity charts for signalized intersections

Public Roads

Vol. 34, No. 9
August 196

Published Bimonthly
Harry C. Secrest, Managing Editor
Harry C. Secrest, Editor (acting)

IN THIS ISSUE

Capacity Analysis Techniques
for Design of Signalized Intersections

Introduction

Development of Capacity Charts 171
Capacity and Levels of Service.. 172
Factors Affecting Intersection Capacity 174
Design of Nomographs

Part 1.-2-Way Facilities

Intersections With Average Conditions 178
Streets Without Parking_ 178
Streets With Parking 180
Rural Conditions 182
Intersections With Separate Turning Lanes 182
Part 2.-1-Way Facilities
Intersections With Average Conditions 192
Streets Without Parking 192
Streets With Parking-One Side 192
Streets With Parking-Both Sides 192
Intersections With Separate Turning Lanes 192
Part 3.-Special Conditions
Determination of Levels of Service Other Than at the Desig- nated Design Capacity 194
Signal Systems Other Than Fixed Time 194
Intersections With High Peaking Characteristics 196
Widened Approaches 196
Check for Capacity of Left-Turn 198
Non-Deterring Turning Movements 198
Left-Turn Lane on Advance Green Indication 200
Right-Turning Movement-Continuous, Controlled by Yield Sign, or Permitted on Red After Stop 202
Capacity Controlled by Intersection Exit 202
2-Lane Turning Movements 204
T and Y Intersections. 206
Multiple-Type Intersections. 208

THE BUREAU OF PUBLIC ROAD WASHINGTON OFFICE
1717 H St. NW., Washington, D.C. 20235

FHA REGIONAL OFFICES

No. 1. 4 Normanskill Blvd., Delmar, N.Y. 120: Connecticut, Maine, Massachusetts, New Ham shire, New Jersey, New York, Rhode Islan Vermont, and Puerto Rico.
No, 2. 1610 Oak Hill Avenue, Hagerstown, M 21740.

Delaware, District of Columbia, Maryland, oh Pennsylvania, Virginia, and West Virginia.
No. 3. 1720 Peachtree Rd. NW., Atlanta, Ga. 3032 Alabama, Florida, Georgia, Mississippi, Nor Carolina, South Carolina, and Tennessee.
No. 4. 18209 Dixie Highway, Homewood, Ill. 604: Illinois, Indiana, Kentucky, Michigan, and W. consin.
No. 5. Civic Center Station, Kansas City, M 64106.

Iowa, Kansas, Minnesota, Missouri, Nebrash North Dakota, and South Dakota.
No. 6. 819 Taylor St., Fort Worth, Tex. 76102. Arkansas, Louisiana, Oklahoma, and Texas.
No. 7. 450 Golden Gate Avenue, Box 36096 , Si Francisco, Calif. 94102.
Arizona, California, Hawaii, and Nevada.
No. 8. 412 Mohawk Bldg., 222 SW. Morrison Stre, Portland, Oreg. 97204.
Idaho, Montana, Oregon, and Washington.
No. 9. Denver Federal Center, Bldg. 40, Denv Colo. 80225.
Colorado, New Mexico, Utah, and Wyoming.
No. 10. Post Office Box 1648, Juneau, Alaska 998 Alaska.
Eastern Federal Highway Projects OfficeRegion 15.
1000 N. Glebe Rd., Arlington, Va., 22201.
No. 19. Apartado Q, San Jose, Costa Rica.
Inter-American Highway: Costa Rica, Guatema. Nicaragua. and Panama.

[^0]
Capacity Analysis Techniques ior Design of Sig̊nalized Intersections

Installment No. 1

ponsored by the
FFICE OF ENGINEERING AND OPERATIONS
UREAU OF PUBLIC ROADS

by ${ }^{1}$ JACK E. LEISCH, Vice President and Chief Highway Engineer, DeLeuw, Cather \& Co. of Canada Ltd.

INTRODUCTION

After publication of the 1950 Highway Capacity Manual, the author presented a procedure for the graphic solution of the capacity of signalized intersections to simplify the work required by the computational procedures in the Manual. Publication of the 1965 Highway Capacity Manual has provided a revised and comprehensive basis for computations of signalized intersections. Many users of the graphic procedure had expressed a desire for revised charts that reflected the revisions in the new Manual.
In this article, which will be presented in two installments, the author has again filled the need for a graphic procedure incorporating current knowledge. In addition to updating the original charts, new charts have been prepared to cover capacity procedures for which calculations previously required extensive application of judgment. Full discussion of the principles and procedures in the application of the charts in addition to sample problems have been included. The information presented provides a graphic procedure for the capacity analysis of most signalized street and highway intersections.
The current set of charts comprises 20 nomographs. Eighteen of the nomographs are presented in this first installment together with the appropriate application procedures and sample problems. The other two nomographs and the remainder of the article will be included in the second installment to be published in the October issue, Vol. 34, No. 10, of PUBLIC ROADS.

HIGHWAY CAPACITY has become recognized as an essential discipline of highway planning and design. Its importance became apparent with the publication of the 1950 Highway Capacity Manual (1), ${ }^{2}$ which has been superseded by a 1965 Highway Capacity Manual (2), hereafter referred to as the Manual. This new publication was based on considerable research and operational experience; it is a sophisticated and highly useful tool for the traffic and highway engineer in the planning, design, and operation of highways and highway systems.

Capacities of streets and the many interchanges associated with freeways in urban areas are determined largely by the at-grade intersections and ramp terminals. To make less cumbersome the capacity analyses required for design of intersections, a set of nomographs based on the 1950 Highway Capacity Manual was prepared and published in a 1951 issue of Public Roads, A Journal of Highway Research (3). Because of the popularity of the nomographic procedure and its adoption by numerous agencies, a revised set of charts, based on the data of the 1965 Manual has been developed. These charts and explanations for their use are reproduced in this article.

[^1]
Development of Capacity Charts

The nomographs printed here generally conform to the format of those originally charted (3) so that a person familiar with the previous charts can use the new charts without having to learn a different procedure. The nomographs have been devised to simplify and reduce the work that otherwise would be required by the long-hand, computational procedures set out in chapter 6 of the Manual.
The basic data for intersection capacities are shown in figures 1 and 2 for 1-way and 2 -way streets, without parking and with parking, expressed in terms of volumes on one approach-vehicles per hour of greenobserved for different conditions of loading, metropolitan area size, peak hour factor, and location within the metropolitan area. The results are representative of average conditions derived from actual observations of some 1,100 intersection approaches. The average conditions are indicative of 10 -percent right turns, 10 -percent left turns, 5percent trucks and through buses, and no local bus stops for pickup and discharge of passengers in the vicinity of the intersection approach.

Attainable volume of discharge (service volume) per approach, shown in figures 1 and 2, for a given or desired degree of loading must be adjusted for specific conditions. The additional adjustment factors are applied as multipliers in accordance with the values and instructions described in the Manual, pages 138-143. These include adjustments for the G / C ratio (signal timing), turning movements, proportion of trucks and through buses, and

Figure 1.-Urban intersection approach service volumes, basic data for 2-way streets.
bus stops. The charts presented here incorporate all of these adjustments, so that for any known condition, the intersection capacity can be obtained directly without reference to the Manual adjustment values. In constructing the charts, all of the adjustments have been precisely accounted for and no short cuts or approximations have been made, except for slight consolidation of values in the right- and left-turn adjustments in charts $3-15$. Therefore, the results obtained by the use of these charts, for all practical purposes, are the same as those that would be obtained by use of the method in the Manual. Several refinements and additional (rational) procedures for conditions not covered in the Manual are also presented. These are included under Special Conditions, Part 3, and in charts 17 and 18 for separate turning lanes.

Capacity and Levels of Service

The 1950 Highway Capacity Manual (1) related the ability of a highway to carry traffic to two levels-practical capacity and possible capacity. Practical capacity is the maximum number of vehicles that can be accommodated under prevailing roadway and traffic conditions without unreasonable delay
or restriction to the driver's freedom to maneuver. Possible capacity represents the maximum number of vehicles that can be accommodated under prevailing roadway and traffic conditions, regardless of the effect of delaying drivers and restricting their freedom to maneuver.

Design policies of the American Association of State Highway Officials (AASHO), published during the 1950 's, accepted this concept and used the same terms for capacity. The AASHO practice, however, produced an additional term design capacity defined as the practical capacity or lesser value determined for use in designing the highway to accommodate the design volume. The original capacity charts (S) were predicated on design capacity, an adjusted value generally less, numerically, than practical capacity, whereas possible capacity was evaluated by application of appropriate conversion factors to design capacity.

The Manual (2) introduced the level of service concept, eliminated the terms practical capacity and design capacity, and substituted the single word capacity for what had been referred to as possible capacity. The six levels of service A through F designated in the

Manual are a qualitative measure of operativ conditions from excellent to intolerab including capacity. Level of service constitut the composite effect of speed and traveltin, traffic interruptions, freedom to maneuv, safety, driving comfort and convenien, and operating costs. An attainable hour volume of traffic, or a maximum service volun, is designated in the Manual for each level f service. A service volume is the maximut number of vehicles that can be accommodat during a specified time period while operatis conditions are maintained that correspond the selected or specified level of service.

Table 1.-Levels of service as related to lo 1 factor for individual isolated intersectio approaches ${ }^{1}$

Level of service	Traffic flow description	Load factor
A	Free flow	
B	Stable flow	
C	Stable flow	
E	Approaching unstable flow	
F	Forced flow.............	

${ }^{1}$ Highway Capacity Manual, 1965, p. 131.

Figure 2.-Urban intersection approach service volumes, basic data for 1 -way streets.

The 1965 AASHO Policy on Geometric lesign of Rural Highways (4) refers to the Manual for basic values, but as in the previous rolicies, continues to use the terms design apacity and possible capacity. Although the erminology is different, the overall concepts n each publication are compatible. For xample, the AASHO terminology design apacity is the same in essence as the Manual erminology maximum service volume for a elected level of service. Also, numerically, the IASHO terminology possible capacity is dentical to the Manual terminology capacity.

The relations presented in the charts, therefore, are equally applicable to the Manual and to the AASHO procedures.

The load factors ranging from 0.0 to 1.0 , as shown on the curves of the basic data in figures 1 and 2, are indicative of levels of service. The load factor is a ratio of the number of green signal intervals that are fully utilized by traffic during the peak hour to the total number of green intervals for that approach during the same period. For intersection conditions, the Manual considers the load factor as an appropriate measure of the levels of serv-

Table 2.-Factor f for conversion of design capacity to possible capacity

Street type and parking conditions	Factor f^{1} when W_{A}, in feet, is-								
	10	15	20	25	30	35	40	50	60
2-way: No parking With parking Rural ${ }^{2}$	$\begin{gathered} 1.20 \\ -1.28 \end{gathered}$	1. 20	1. 201.101.28	1. 20	1. 211.181	1. 23	1.251.25	1. 27	1. 301. 341.44
		1.28							
1-way:									
No parking---1/ Parking one side		--------	1. 15 1.10	1.13 1.13	1.12 1.16	1.12 1.18	1.13 1.20	1.15 1.25	1.17 1.30
Parking both sides				1.25	1.25	1.25	1.27	1.32	1.37

${ }^{1}$ Ratio of attainable volume at 0.85 load factor to that at 0.30 load factor, except for rural conditions
${ }^{2}$ Ratio of attainable volume at 0.85 load factor to that at 0.10 load factor
ice, since the loading is something the driver sees and interprets in terms of degree of congestion. The relation is shown in table 1.

Level of service B-load factor of not more than 0.1 -is considered in the Manual to be suitable for design of intersections under typical rural conditions. Level of service Cload factor of not more than 0.3 -normally is recommended for design of intersections in urban areas. Level of service E with operation at a load factor of 0.85 is taken to be representative of possible capacity. Although a factor of 1.0 sometimes may be approached, a lesser factor such as 0.85 generally indicates the maximum loadings that can be achieved repetitively and sustained over a period of 1 hour. Using these load factors, the relation between design capacity and possible capacity, for rural intersections and for different street types in urban areas, are summarized in table 2. The values shown are the ratios of attainable volumes per hour of green (average conditions) at 0.3 load factor (0.1 for rural conditions) to the attainable volumes at 0.85 load factor. Therefore, design capacity can be converted directly to possible capacity by multiplying design capacity by the appropriate factor (f) in table 2.

Although the charts are based on design capacity (service level C for urban conditions and service level B for rural conditions), conversion to any other level of service can be achieved by the use of factors (f) in table 3 for 2 -way facilities and in table 4 for 1 -way facilities. Thus, the charts may be used with equal facility to find design and possible capacities in accordance with AASHO practice, or to find maximum service volumes for any desired level of service, A to E, in accordance with the Manual procedure.

Factors Affecting Intersection Capacity

The charts, together with the designated procedure, incorporate all factors affecting intersection capacity covered in the Manual. These factors, which are listed below, also indicate the data needed to analyze the capacity of a given intersection or to determine its required geometry for a given traffic volume, and they are accounted for in the charts either directly or in combination with supplementary charts or tables.

Basic Physical and Operating Conditions:
One-way or two-way operation,
Parking condition, and
Width of approach.
Environmental Conditions:
Metropolitan area population,
Location within metropolitan area,
Peak-hour factor, and
Load factor.
Traffic Characteristics:
Traffic volume to be served on each approach,
Turning movements,
Trucks and through buses, and
Local buses (bus stops).
Control Measures:
Traffic signals-functional type and phas-ing-and
Degree of channelization and approach lane markings.

Design of Nomographs

Chart makeup

The charts presented here for the graphic solution of intersection capacities are nomographs of the stepped variety. They perform a series of multiplications and algebraic additions necessary for various adjustments to find design capacities for given roadway and traffic conditions. The first two charts are simple arrangements for determining the design capacity of one approach to a signalized intersection for average conditions. Chart 1 is for 2 -way, and chart 2 for 1 -way, facilities. The upper part of each nomograph is a plot of the curves from figures 1 and 2 with a load factor of 0.3 for the different types of facilities (except for rural highways), parking conditions, and location within the metropolitan area. The curves relate the approach width to design capacity for average conditions in terms of vehicles per hour of green. The lower part of the chart is a proportional graph that converts-for a given signal timing-the

Table 3.-Factor f for adjustment to various levels of service, 2-way facilities

Level of service	Load factor	Factor f when approach width W_{A}, in feet, is-								
		10	15	20	25	30	35	40	50	60
2-way street-no parking:		0.85	0.86	0.87	0.88	0.89	0.90	0.89	0.87	
A No backlog	0.1	0.90	0.91	0. 91	0. 92	0. 92	0.92	0.89 0.93	0.87 0.92	0.85 0.91
C Design capacity	0.3	1. 00	1. 00	1. 00	1. 00	1. 00	1. 00	1.00	1. 00	1.00
D .-.-........--	0.7	1. 14	1. 14	1. 14	1. 14	1.15	1. 16	1.17	1. 18	1. 20
E Possible capacity	0.85	1. 20	1. 20	1. 20	1. 20	1.21	1. 23	1. 25	1. 27	1.30
2-way street-with parking: A No backlog	0.0	--..		0.95	0.93	0.91	0.89	0.88		
	0.1	--...	-----	0.97	0.96	0.95	0. 94	0.88 0.93	${ }_{0}^{0.81}$	0.84 0.89
C Design capacity	0.3	-....	----	1. 00	1. 00	1. 00	1. 00	1. 00	1. 00	1.00
	0.7			1.06	1. 09	1.11	1. 14	1.17	1.22	
E Possible capacity	0.85		--..	1. 10	1. 14	1.18	1. 21	1. 25	1.31	1.34
Rural highway:										
A No backlog	0. 0	0. 92	0. 95	0. 96	0. 96	0. 97	0. 97	0.97	0. 97	0.96
${ }_{C}^{\text {B }}$ Design capacity	0.1 0.3	1. 1.11	1. 00	1. 00	1. 00	1. 00	1.00 1.11	1. 00 1.11	1.00 1.11	1. 00
D	0.7	1. 21	1. 21	1. 22	1. 23	1.25	1.27	1.29	1.31	1.33
E Possible capacity	0.85	1. 28	1. 28	1.28	1. 30	1. 32	1.35	1. 38	1.41	1.44

Table 4.-Factor f for adjustment to various levels of service, 1-way facilities

Level of sevice	Load factor	Factor f when approach width W_{A}, in feet, is-								
		10	15	20	25	30	35	40	50	60
1-way street--no parking:										
A No backlog	0. 0	----	---	0. 95	0.95	0.95	0.94	0.94	0.94	0. 93
${ }_{\text {C }}$ Design capacity	0.1 0.3	-----	----	0.97 1.00	0.97 1.00	0.97 1.00	0.96 1.00	0.96 1.00	0.96 1.00	0.95 1.00
D	0.7	-.--	---	1. 12	1. 09	1. 07	1.07	1. 08	1.11	1. 13
E Possible capacity	0.85	----	---	1.15	1. 13	1.12	1. 12	1. 13	1.15	1.17
1-way street-parking one side: A No backlog	0.0			0.90	0.89	0.89	0.89	0.88	0.87	0.86
B	0.1	-.---	---	0.93	0.93	0.93	0.93	0.92	0.91	0.90
C Design capacity	0.3	----	--	1.00	1. 00	1. 00	1.00	1. 00	1.00	1.00
D	0.7	----		1.07	1.08	1.10	1. 12	1.14	1.17	1. 22
E Possible capacity	0.85	----	----	1. 10	1.13	1.16	1.18	1. 20	1.25	1.30
1-way street-parking both sides:										
A No backlog	0.0	-.--	---	----	0.88	0.85	0.84	0. 83	0.83	0.82
B	0.1				0.91	0.90	0.90	0.89	0.88	0.88
C Design capacity	0.3	---			1.00	1. 00	1. 00	1.00	1. 00	1.00
D P-...............	0.7	--			1.17	1.17	1.17	1. 18	1.22	1.25
E Possible capacity	0.85	----	----	----	1.25	1. 25	1.25	1.27	1.32	1.37

design capacity to a volume in vehicles per hour. The third graph unit on the right adjusts this volume to a given metropolitan size.

The two charts are applicable to situations where only approximate solutions are required or where specific traffic characteristics are not known. They also form the basis for developing additional nomographs for specific conditions. The upper curves, five in chart 1 and eight in chart 2, are the basis for the 13 detailed nomographs in charts 3-15. Each curve in the succeeding charts, expanded to a family of curves representing various percentages of trucks in the traffic stream, forms the upper section of a separate nomograph. The signal-timing-adjustment (G^{\prime} / C ratio) part of the graph in charts 1 and 2 is used to form the last section of the succeeding charts. The intermediate parts of the nomographs, charts $3-15$, account successively for the effects of right turns, left turns, and metropolitan area size.

These nomographs are supplemented by: chart 16, which provides adjustments for conditions where there are bus stops at the
intersection; chart 17, which determis capacities of separate right- and left-tin lanes without separate signal indication; : chart 18 , which determines capacities separate right- and left-turn lanes with se rate signal indication.

The last two nomographs, charts 19 ed 20 (to be published in Oct. 1967 isst), are designed for use in planning stret systems and in preliminary design, or ir review of plans where approximate but quk solutions are desired in terms of total or or all intersection capacity. The charts augmented by several tables and spe 1 l conditions that can be used for complie analyses of practically any form of signalid intersection problem.

Definitions and chart terminology

The factors affecting capacity, referred tin the charts, are defined in the following stements. To reduce these factors to simple tells on the charts and in the examples, a systenff symbols is employed. The factors used at le outset to organize the charts are (1) 1-way)r
EXAMPLE
Given
Two-way, 66-ft Stree No Parking
Metro Pop. - 400,000
Fringe Areo

$$
\begin{aligned}
& W_{A}=33^{1} \\
& G / C=0.50 \\
& \text { Solution } \\
& \hline C_{D}=1500 \mathrm{vph}
\end{aligned}
$$

50
$=40$

30
20
20

10
30
20

10

2-way operation, (2) parking conditions, and (3) location within the metropolitan area. The various combinations of the three conditions produce the 13 separate charts numbered $3-15$. These conditions are:

1-way or 2-way Operation

There are major differences in the operation of 1 -way and 2 -way approaches which are reflected in the capacities attained. Because of this, analysis procedures for the 1 -way and 2 -way approaches are handled separately.

Parking Conditions

No parking (NO PKG) is defined as no standing and no stopping on the approach, other than an occasional passenger discharge or pickup.
With parking ($P K G$) means that vehicles are present, standing attended or unattended,
which the principal land use is for business activity.

Residential Area (RES) is that portion of a municipality, or an area within the influence of a municipality, in which the dominant land use is residential development, but where small business areas may be included.

Area outside city environs (RURAL) is characterized by open country. This area is not related to metropolitan area but is grouped here as a type of area to be considered in capacity analyses and for which a separate chart has been developed.

The other factors accounted for directly on charts $3-15$ and the symbols adopted for them are noted as follows:
W_{A} Width of approach to the intersection, in feet. For a 1 -way street, it is normally the

MP Metropolitan area population and ts peak-hour factor both have a significant effet on iniersection capacity. Several pertinet points are noted:

- Nine population groups are considered the Manual, including a variety of metpolitan areas from small single cities to wirspread urbanized areas composed of sevel cities. These are listed in table B on chas $3-14$. Higher capacities are associated wh the larger metropolitan areas. Application f resultant criteria to satellite communities quires judgment and/or local study to establh whether the community is better consided as a separate independent small city or n outlying part of the large central city.
- The peak-hour factor $(P H F)$ is a meas e of consistency of traffic demand. For int-

Figure 3.-Signal phasing and G/C ratio illustrated.
along the curb on the approach. For capacity considerations, only the actual presence or absence of parked vehicles applies, not posted parking regulations.

Location Within Metropolitan Area
Central Business District (CBD) is that portion of a municipality in which the dominant land use is for intense business activity.

Fringe Area $(F R N G)$ is that portion of a municipality immediately outside the central business district in which there is a wide range in type of business activity, generally including small commercial, light industrial, warehousing, automobile service activities, and intermediate strip development, as well as some concentrated residential areas.

Outlying Business District ($O B D$) is that portion of a municipality or an area within the influence of a municipality, normally separated geographically by some distance from the central business district and its fringe area, in
total curb-to-curb width. For a 2 -way, undivided street, it is the actual width utilized by traffic approaching the intersection, normally measured from the outer curb to the division line. For a 2 -way, divided street, it is the width of the approach roadway, normally measured from the outer curb to the curb or edge of median. W_{A} is always exclusive of specially designated turning lanes.
T Trucks and buses, exclusive of light delivery trucks, as a percentage of the total approach volume. Local buses stopping to pick up and discharge passengers are counted along with through buses and are presented in the charts.
R Right-turning vehicles expressed as a percentage of the total volume on the approach.
L Left-turning vehicles expressed as a percentage of the total volume on the approach.
sections, it is defined as the ratio of the numer of vehicles accommodated during the P^{kk} hour to four times the number of vehies accommodated during the highest 15 cons utive minutes. Higher capacities are associed with the larger peak-hour factors.

- For convenience in the solution of p blems, the effects of metropolitan area popation and peak-hour factor are consolided in a single adjustment factor ($M P$) on ch'ts $3-14$. Table B on the charts is entered st with metropolitan area population and $\mathrm{p} . \mathrm{k}^{-}$ hour factor. The resultant adjustment faor is then applied in the nomograph.
- Sometimes the peak-hour factor may ot be available, particularly on new facilies planned for the future. Then the applicaon of the MP adjustment in the charts ma,be accomplished by the use of a metropolan (metro) area population only, labelled on he curves. That is, population is used dircly

2

One-way, $42-\mathrm{ft}$ Street Parking Both Sides Metro Pop. - 750,000 Outlying Business District $W_{A}=42^{\prime}$ $G / C=0.60$
$M P=M E T R O$ POPULATION IN I,000's

DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS
ONE-WAY STREET - AVERAGE CONDITIONS

$$
\text { CHART } 2
$$

in the chart without using table B data. The indicated population size, however, incorporates an aperage or representative peak-hour factor. This built-in peak-hour factor ranges from (0.80 for a metro population of 50,000 to 0.90 for a metro population of more that 1 million, based on the arerages of data colIrected for nearly soo signalized urban intersections.
G / C Proportion of total time during the peak hour that the signall is green for the movement of traffic from the one approach. For a fixed-time signal, in which the length of intervals of the greet and red indications are held constant throughout the hour, the hourly proportion of green for a given ap-
proach is measured directly by the ratio of G to C, where G is the green interval in seconds, and C is the total cycle (including green, amber, and red intervals) in seconds. Phase sequences and the formation of the G / C ratio are illustrated in figure 3 for a standard 2 phase signal. For 3-phase control, three bars would be shown, and three green, red, and amber intervals would constitute a eycle.

The signal phasing may be altered during different periods of the day. A 3-dial control, which provides different signal phasings for the a.m. peak period, the p.m. peak period, and the off-peak periods, is a popular form of fixed-time control in urban areats. The 3-dial signal setting allows for greater efficiency in utilization of
the signal by fitting more closely the deman of traffic during the several periods througho: the day. For this reason, traffic informati should provide one design hour volun ($D H V$) for the a.m. peak period and a separ: $D H V$ for the p.m. peak period. Additionl peaks may be considered, such as those 1. curring during summer weekends, heary tru: operations, etc.

The G / C principle for analysis is also app cable, with some modification, to actuall control and to progressive signal syster Procedures for other than fixed-time contl are covered in part 3 under the headg Signal Systems Other Than Fixed Time.

Inlersections With Average Conditions

Capacity analyses for plaming and proliminary design stages generally are accomplished in simplified form. As specifie conditions relating to turning mosements and truck perematages are not known under such eircumstances, procedures using aterage conditions are appropriate. Chart 1 allows the determination of design capacities for condilions with and without parking for different locations within metropolitan areas of different sizes and for conditions within rural areas. Arerage conditions constitute 5 -pereent trucks and buses, 10 -pereent right turns, 10 -pereent left turns, and no bus stops.

Problem 1

What is the design capacity of a 2 -way strect, 66 feet wide curb-to-curb, with parking prohibited, in a fringe area within a metropolitan (Metro) size of $40(0,000$ population? Major intersections are signalized. Specific datal regarding eonmmereial vehicles, turning movements, ete., are not known, but conditions are assumed to be atrerage. Half the time during the hour can be allotted to green On this streset.

Solution: Using $W_{A}=66 / 2=33$ and $G C=$ 0.50 , and following the arrows indicated in chart 1 , it is determined that design capacity $C_{D}=1$, $\boldsymbol{i}()()$ v.p.h. in one direction. If parking wore permitted, C_{D} would be 1,070 v.p.h.

Problem:

A major street consisting of al narrow median and two 2l-foot traveled ways with no parking, in at residential area within a metro size of

100,000 population, is to hate a signal installed at a cross street. Conditions are asslumed to be average. If the cross street requires a G / C of 0.35 , what would be the design capacity of the major street? If the approach volume, $D H V$, is $1,350 \mathrm{v} . \mathrm{p} . \mathrm{h}$., what width of traveled way is required in each direction, without exereding design capacity, assuming a lane width of not less than 11 feet?

Solution: Normally the amber periods, for purposes of capacity analyses, are considered to be 10% of the erele. Therefore, G / C available for the major street approaches is $1.00-0.35-0.10=0.55$. Proceeding through chart 1 with $W_{A}=21$, residential area without parking, $G / C=0.55$, and $M P=100,000$, a value of $C_{D}=910$ is found.

To handle an approach volume of 1350 r.p.h., the recuired width of approach is found by proceeding through the chart in reverse order. Proeneding through the chart with $M P=100,0000, C_{D}=1,350(0, G / C=0.55$, and residential area without parking, $W_{A}=31$ feet is found. Using 11 -foot lames, the required width of approach is 33 feet.

Problem 3

In a econtral business district of a 2500,000 population metro area, a 2-way 58 -foot street with parking intersects a 2 -wiay 44 -foot street with no parking. The former is to ateommodate a peak-hour volume of 620 v.p.h. in one direction. If conditions are assumed to be average and a 6 (t-second cyele is used, 6 seconds of which are allotted to amber, what should be the green interval on the 58 -foot street for operation at design capacity? What would be the resultant grees interval and
design capacity of one approach on the 44-f t street? What would be the possible capacituf this approach?

Solution: Enter chart 1 at left with $W=$ $58 / 2=29$, proceed right to $C B D$ with park g curve, then down to lower graph until a hizontal projection of $620 \mathrm{v} . \mathrm{p} . \mathrm{h}$. is intersect: $G / C=0.43 . G$ on 58 -foot street $=60 \times 0.43=?!$ seconds. G on $44-$ foot street $=60-26-6=$ ' 4 seconds; and $G / C=28 / 60=0.47$.

For the design capacity of the 44 -foot str t using $W_{A}=44 / 2=22$, CBD without parkis. and $G / C=0.47$, in chart $1, C_{D}=730 \mathrm{v}$ p.h n one direction.

For the possible capacity of the $44-f t$ strect, using $f=1.2$ from table 2 for a 22 - fot approach with 110 parking, $C_{P}=730 \times 1.2=30$ v.p.h. in one direction.

Streets Without Parking

Charts 3 and 4 include the adjustments or specific intersection conditions on 2-1 ! streets where parking is prohibited. Char is is applicable to central business districts, : ! chart 4 to all othere seetions within the me ${ }^{1-}$ politan area-fringe, outlying business, : d residential. Charts 3 and 4 will often be $11 /$ by proceeding from the left side to botto scales, as shown by arrows. The charts 11 also be used in the reverse order to obtain te width of approach required to handle a gi is volume. Or, with a given approach volue and a givelt width, the neeessary rationt green time to eycle time ean be determid readily. When the approach width and G / C ratio cannot be altered, but capacity m-t be increased, the increase through eliminatit
of left turns and/or changing the bus-s'p

DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS

TWO－WAY STREET－NO PARKING－C．B．D．

175	0.87	0.90	0.94
100	0.84	0.87	0.91
75	0.81	0.85	0.88

[^2]人彡，ar
－H」OIM HOVOyddV $={ }^{\nabla} M$
condition with the aid of chart 16 , can be found on the charts.

C'hares 3 and 4 apply to intersection approaches that have the conditions deseribed On the charts. The direct use of the charts as indicated by example arrows, however, is applicable spereifically to the condition in which the volume of left-turning vehicles on the approach ean be handled without requiring a separate signal indication. A check for the capacity of left-turn movement should always be made when using charts 3 and 4 and also charts 5-15, as explatined in Part 3, Special Condtions under the heading Check for Capacity of Left Turn. For simplicity in demonstration and better understanding of chart use, examples $4-8$ are purposely selected so that the volume of left-turning vhicles does not exeeed the capacity of the left-turn movement. The maximum service volume of left-turning Trehicles that ean be accommodated without a separate signal indication on major streets is generally in the range of $x(0)$ to 120 v.p.h., and a left-turning volume of 100 v.p.h. can be used as an arerage. Further examples illustrate the use of this important control.

Where bus stops are provided at the intersection for pickup and discharge of passengers, design capacity values obtained from charts 3 and 4 are corrected by multiplying the result by an appropriate adjustment factor from chart. 16. When the charts are used in reverse order, to find G / C or W_{A}, C_{D} is divided by the bus adjustment factor before the charts are entered.

Where levels of service other than C (design capacity) are desired, including level of service E (possible capacity), the resultant value of C_{D} in charts 3 and 4 should be multiplied by an appropriate adjustment factor from table A shown at upper right on charts 3 and 4 . When the charts are used in reverse order, C_{D} is divided by the level of service factor before the charts are entered.

Problem 1

I) otermine the design capacity of one approach on a 50 -foot, 2 -way street without parking. located in the CBD of a metro area with a population of 500,000 . Other conditions al the intersection are: $T=8 c_{c}, \quad R=25^{c}$ c, $L=10^{\circ}$ i, $G=36$ seconds, $C=60$ seconds, and no bus stop.

Solution: Einter chart 3 with $W_{A}=25$ and follow the arows according to cach condition; find $C_{D}=1,040 \mathrm{v} . \mathrm{p} . \mathrm{h}$.

Problem 5

I) etermine the design capacity and possible capacity of one approach on a 64 -foot 2 -way streot without parking, where the cyele is 60 seconds and green interval is 27 seconds. The intersection is located in the ($B D$) of a metro area with a population of 250,000 . O) ther conditions are: $T=12 \%, \quad R=15 \%$, $L=7 C$, and bus stop on near side serving 46 buses per hour.

Solution: Enter chart 3 at left with $W_{A}=32$ and using $T=12 \sigma_{i}, R=15 \sigma_{i}, L=7 \sigma_{c}, M P=$ pop). 250,000, and $G / C=27 / 60=0.45$; find $C^{\prime}{ }_{D}=930$. Lising chart 16-no parking, near side- $B=4 f$ and $\Pi_{A}=32$ (see arows on chart) find adjustment factor, $F_{B}=0.81$. Design
capacity $C_{D}=930 \times 0.81=750$ v.p.h., in one direction.

From table A in chart 3, for possible capacity and $W_{A}=32, f=1.22$. Possible capacity $C_{P}=750 \times 1.22=920$ v.p.h. in one direction.

Problem 6

A 2-way strcet on which there will be no parking is planned to cross an existing street. The facility is located in the $C B D$ of a metro area having a population of 250,000 and a peak-hour factor $(P H F)$ of 0.80 . According to the volume on the existing street, 33% of the cycle time must be allotted to green on that street. Determine the needed width of parement on the new street if the $D H V$ in one direction is $1,200 \mathrm{v} . \mathrm{p} . \mathrm{h}$. and other conditions are: $T=14 \%, R=12 \%, L=5 \%$, no bus stop, and C is to be set at 70 scconds with an allowance of 6 seconds for amber per cyele.

Solution: The time available for the amber periods and for the green on the new street is $1.00-0.33=0.67$. Therefore, $(G+$ amber $) \div$ $C=0.67$, or $(G+6) \div 70=0.67 ; G=41$ seconds, and $G / C=0.59$

Enter chart 3 at bottom with a peak-hour volume of 1,200 v.p.h. in one direction, and proceed through the chart, turning at $G / C=$ $0.59, M P=0.97$ (determined from table B), $L=5^{\circ} \mathrm{c}, R=12 \%$, and $T=14 \%$; find $W_{A}=31.5$ feet. In proceeding through the chart, it was necessary to assume for the L and R turning points that either $W_{A}=(16$ to 34$)$ or $W_{A}>35$. If the proper assumption is made initially, the answer is determined directly. If the assumption is incorrect, a second trial is required to determine the correct answer. If 11-foot lanes are to be used, and operation is generally balanced by direction, the new street should be the nearest multiple doubled for both directions; $33 \times 2=66$ feet wide.

Problem

Determine the design capacity of ath intersection approach on a street with a narrow median and two 30 -foot pavements in the fringe area of a city having a metro population of 700,000 and PHF of 0.89 . Other conditions are: $T=9 \%, R=14 \%$, left turns prohibited, $G=31$ seconds, $C=65$ seconds, and a bus stop on the far side serving 70 buses per hour.

Solution: As a preliminary step, find $M P=$ 1.11 by interpolation in table B, chart 4 : $G / C=31 / 65=0.48$; and $F_{B}=0.95$ in chart 16 110 parking, far side-using 70 buses, $W_{A}=30$ and $(L+R)=14 \%$. Proceed through chart 4 from upper left with $W_{A}=30$ and follow the arrows according to each condition, as illustrated on the chart. Find initial $C^{\prime}{ }_{D}=1,460$; with adjustment for loeal buses, design capacity, C_{D}, is $1,460 \times 0.95=1,390$ v.p.h. in one direction.

Problem 8

In a residential area of a city with a metro population of 1 million, a 2-way, 40-foot parkway is to be crossed by a new street. On the critical approach of the existing parkway the projected peak-hour traffie volume in one direction is 960 atutomobiles of which $1: 35$ turn right and wot turn loft. On the eritical approach of the new street, the design volume is 1,680 v.p.h. of which $7 \mathrm{C}_{i}$ are trucks; turning move-
ments are 10% and 4% to the right and left respectively. There will be no parking and ne bus stops at the intersection on cither facility: If 12 -foot lanes are to be used, how many, lames are required on one approach of the nell facility?

Solution: It is first necessary to determine the proportion of green time required for thi existing parkway. From chart 4, using $W_{A}=$ $20, T=0$ c, $R=135 / 900=15 \%, L=80 / 900=$ 9%, no bus stops, and intersecting from a volume (equal to C_{D}) of 900 v.p.h., it is founc that $G / C=0.43$.

Assume $C=60$ seconds and total amber period is 6 seconds. Then, G for parkway traffic is $0.43 \times 60=26$ seconds, and G fol traffic on the new highway is $60-26-6=2\}$ seconds.

To determine the required width of the new facility, enter the bottom of chart 4 at a desigı volume of $1,680 \mathrm{v} . \mathrm{p} . \mathrm{h}$. , and proceed up and to the left using $G / C=28 / 60=0.47, M P=p o p$ $1,000,000, \quad L=4 \%, \quad R=10 \%$, and $T=7 \%$ find $W_{A}=35.5$ feet. Three 12 -foot lanes, ther. fore, are required on the new highway in eacl direction of travel.

Streets IVith Parking

Charts 5 and 6 include the adujstment for specific intersection conditions on 2 -wa streets with parking permitted. (In this article as in the Manual, parking parallel to tl: curb is the only type considered; diagon: parking would obviously have a much di ferent effect on traffic flow.) Chart 5 applicable to central business districts, an chart 6 to all other sections within the mefre politan area-fringe, outlying business an residential.

The procedure through the charts is tl stome as for charts 3 and 4 as previousl described. Also, the direct use of charts and 6 applies to the condition where th volume of left-turning vehicles on the approar can be accommodated without requiring separate signal indication. For simplicity is presentation, examples $9-13$ were selected s. that this condition is satisfied, as it woul. be ordinarily when the volume of left-turnis rehicles on one approach does not excer 100 v.p.h. Adjustments for bus stors, accordance with chart 16, and for levels service other than C, in accordance wit table A, shown at upper right of eharts and 6 , are accomplished in the same way : for charts 3 and 4.

Problem 9

Determine the design capacity and po sible capacity of one approach on a 2 -wa 60 -foot street, with parking in the centr business district of a metro area having population of 750,000 . Other conditions ar $T=8 \%, \quad R=14 \%, \quad L=0 \%$ (left turns pr hibited), $G=34$ seconds, $C=65$ seconds, al a far-side bus stop that serves 70 bu: during the peak-hour period.

Solution: Enter chart 5 at left with $W_{A}=\varepsilon$ and proeeed through the chart using the cond tions listed. The initial result, its shown ! the arrows in the chart, is a design capacit $C^{\prime \prime}{ }_{D}$ of $900 \mathrm{v} \cdot \mathrm{p} . \mathrm{h}$.
TABLE A - ADJUSTMENT FACTOR (f) FOR LEVEL OF SERVICE

$$
\begin{aligned}
C_{D}= & 1460 \times 0.95=1390 \mathrm{vph} \\
C_{D} & (\text { Factor } 0.95 \text { from Chart } 16 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& G / C=31 / 65=0.48 \\
& B=70 / \text { hour, Far-side stop }
\end{aligned}
$$

$$
4000
$$

4

,ono 3000
 IME TO

0	0	-	-	-		
∞	∞	0	\pm	0		
∞	∞	0	-	\sim		
0	0	-	-	-		
N	-	0	Δ	0		
∞	∞	0	-	\sim		
0	0	-	-	-		
0	-	0	\pm	0		
∞	∞	0	\pm	\sim		
0	0	-	-	-		
∞	0	0	\pm	0		
∞	0	0	\pm	\sim		
0	0	-	-	-		
				∞		
0	-	m	\cdots	∞		
0	0	0	0	0		A No Bocklog
:---						
B						
C Design Capocity						
D						
E Possible Capacity	* NOTE: Condition where volume of left turning velicies					

can be handled without o seporate signal indication; before using chort, the capocity of
left-turn movement should be checked os per
Special Conditions, item 5 . EXAMPLE

$$
\begin{array}{ll}
W_{A}=30^{\prime} & M P=700,000, \text { PHF }=0.89 \\
T=9 \% & \text { Fringe Area } \\
R=14 \% & G / C=31 / 65=0.48 \\
L=\text { Prohibited } & B=70 / \text { hour, Far }- \text { side stop }
\end{array}
$$

AREAS
DESIGN IG TO 位 FURTMER ADJUSTEDI
DESIGN CAPACITY OF SIGNALIZED INTERSECTIONSSIGNALIZED INTERSECTION

TABLE B-ADJUSTMENT FOR METRO SIZE AND PHF			
METRO AREA	PEAK HOUR FAC		
	0.70	0.7	0.80
Over 1000	10	107	
1000	01	05	08
750	098	1.02	105
500	096	0.99	102
250	090	093	0
175	087	0.90	0.94
100	084	0.8	0.91
75	081	083	088
PPOP (1000's)	0.85	0.90	0.95
Over 1000	1.14	1.18	
1000	1.11	1.15	1.
750	1.09	1.12	
500	1.06	109	1.13
250	100	103	107
175	097	1.01	
100	094	0.98	1.01
75	092	95	098

[^3]Becanse there is a bus stop on the far side, with parking, the lower part of chart $16-\mathrm{B}$ is used: for 70 buses, ($13 D$), $W_{A}=30$ feet, and $\left(L_{A}+R\right)=14_{c}, F_{B}=0.98$.

Design capacity, adjusted for the bus stop, is $C_{D}=900 \times 0.98=880$ v.p.h. Adjustment factor for possible capacity for a 30 -foot approach is $f=1.18$ (table A on chart 5); $C_{P}=880 \times 1.18=1,040$ v.p.h.

Problem 10

Determine the design eapacity of a 32 -foot approatch of a 2 -way street with parking in all ontlying business district of a metro area hatsing it poppulation of 400,000 . Other condifions: $T=5 \%, R=16 \%, L=7 \%, G=36 \mathrm{sec}$ onds, ${ }^{r}=62$ seconds, and a near-side bus stop handling jo buses during the peak-hour period.

Solution: Using $\|_{A}=32$, and following the arrows in chart 6 for the conditions indicated, $C_{n}^{\prime}=1,220$ v.j. h .

Adjustment for buses is foumd in the upper part of chant $16-\mathrm{B}$. Tsing $B=50$, outlying-area furning line and $(L+R)=23 C_{c}$, in conjunction with $\|_{A}=24$ and $W_{A}=36$, an adjustment of $F_{B}=1.06$ and 1.08 , respectively, is found. Interpolating for $\mathrm{I}_{A}=32, F_{B}=1.07$.

Design capacity of one approach, $C_{D}=$ $1,220 \times 1.07=1,310$ г.p.h.

Problem $1 /$

As shown in figure 4, in cast-west 52-foot, 2-way street operates with parking on the south side only: Two lanes are available for moving traffic on both the west and east approaches. The intersection is located in the fringe area of a city having a metro population of 200,000 . If the $P^{\prime} H F=0.75$ and the evening peak-hour traffic is as indicated in figure 4 , determine the signal timing required on the rast-west street to accommodate this traffic, using a 60-second cyele.

Solution: For the west approach, as there is parking, chart $\left(\begin{array}{c}\text { is applicable. The fact that }\end{array}\right.$ there is no parking on the north side of the street or on the eatst approateh does not affect the operation of the analysis of the west approatch, which does have parking. Enter chare if at upper left with $H_{A}=31$ feet and proceed throngh the chart using $T=12^{\circ}{ }_{i}$, $L=40 / 660=6 \%, R=60 / 660=9 \%$ and $M P=$ (0.s!) (adjustment factor interpolated from table 13 for metro population of 2000,000 and PHF=(1.75). The horizontal projection from the $W I^{\prime}$ tmoning lime is then intersected by a bretical projection from a (${ }_{D}$ value on the bottom seale egual to the approach volume of (ifif) 1. p.h. ; find $G / C=11.40$.

For the east approach, as there is wo parking, chart 4 is applicab)e. Enter chart with $H_{A}=21$ foet and, using $T=9 \%, \quad R=j 0 / 810=6 C_{c}$, $L=\mathcal{S}() \& 10=10(\%$ and $M P=0.89$, find the point of intersection on the (i:C scalle for C_{D} equal to an approath volume of sio v.p.h. : $G / C=11.5)$.

The reguired sigual timing for the east-west strect, therefore, is the larger of the two G / C values or 0.50, and it G of $0.50 \times 60=30$ seconds.

Rural Conditions

Capacities and service volumes representative of different levels of service for specific
intersection conditions in rural areas may be determined by using chart 15 . The general format of the nomograph and procedure for application of the nomograph is the same as for charts 3-6. The fourth set of turning lines in chart 15 differs from a similar set in charts $3-6$ becallse only the peak-hour factor is accounted for in chart 15 as population is irrelevant. Normally, all rural conditions are represented by a peak-hour factor of 0.70 , for which the adjustment factor in the chart is 1.0) (.

On recreational routes operating under peak-flow conditions that build up to a $P H F$ of 1.00 , the capacities and service volumes according to the Manual may be adjusted upward by 40%. Thus an adjustment factor of 1.40 is indicated in the chart for recreational route-high-peak flow. An intermediate condition, referred to as recreational route-peak flow is introduced in the chart assuming a $P H F$ of 0.85 , with a corresponding adjustment factor of 1.20 .
that truck traffic is negligible, and right ane left turms are reduced to 6% and 4%, re spectively.

Solution: Enter chart 15 with $W_{A}=22$ anc proceed through the chart turning at $T=0 \%$ $R=6 \%, L=4 \%, P H F=0.85$ and $G / C=0.55$ find $C_{D}=1,100$ v.p.h., and $C_{P}=1,100 \times 1.29=$ 1,420 v.p.h.

Problem 14

If the facility in Problem 13 was expecte, to handle traffic from a much expanded resor area under conditions of extremely high-pea flows, approaching a peak-hour factor of 1.00 what would be the maximum 1 -way volum that could be accommodated at such times All other conditions are assumed to be th same.

Solution: Proceed through the chart as i Problem 13 but turn on $P H F=1.00$; fin $C_{P}=1,280 \times 1.29=1,650$ v.p.h. in one d rection.

Figure 1.-Problem 11 illusirated.

Problem 12

Determine the design capacity and possible capacity of an intersection approach of a 2 way 4 -lane highway in a rural area operating under normal peaking characteristics. Other conditions are: lane width $=11$ feet, $T=15.0$. $R=122^{\circ}, L=7 \%$, and available $(G / C=0.55$.

Solution: Enter chart 15 with $\mathbb{W}_{A}=22$ feet and proceed through the chart, using the conditions given, as indicated by the arrow:; find $C_{D}=740 \mathrm{r}$ p.h. $C_{P}=740 \times 1.29=950 \mathrm{r} . \mathrm{p} . \mathrm{h}$.

Problem 13

The capacities indicated in the above problem are representative of normal conditions. If the same facility during the summer werkends carries recreational traffic, what would be the design capacity and possible capacity during peak flows on these weckends? Controlling conditions are the same except

Intersections IVith Separate Turnios Lanes

Frequently, on modern highways al strects, exclusive lathes on intersection :proaches are provided for left- or rigiturning movements. Such lanes may be t. addition to the regular width, or they may e specifically marked for turns within the bat approach width. Exclusive turning lanes no be controlled by separate signal indieations, 5 they maty be hatndled without additional sig il phases.

Citpateities of virrious forms of turning lass are given in chauts 17 and 18 . Procedures r analyzing intersection approaches with turn 4 lanes, including illustrative problems, presented bolow. Traffic carrying carpabilits are expressed in terms of designlı capacity ad passible capacity. No distinction normally is made for ot her (intermediate) levels of serv.,
 * NOTE:
Condition where volume of left
turning vehicles can be handled
without a separate signal
indication; before using chart,
the capocity of left-turn
movement should be checked as
per special conditions, ltem 5 .

TABLE B - ADJUSTMENT FOR
METRO SIZE AND PHF
 $\begin{array}{lll}0 & 0 \\ 0 & - \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & - \\ n & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

 \begin{tabular}{|l|l|l|l|l|}
\hline POP. 11000 's \& 0.85 \& 0.90 \& 0.95

\hline

\hline er 1000 \& 1.14 \& 1.19 \& 1.24

1000 \& 1.11 \& 1.16 \& 1.21

750 \& 1.09 \& 1.13 \& 1.18

500 \& 1.06 \& 1.11 \& 1.15

250 \& 1.00 \& 1.05 \& 1.10

175 \& 07 \& .0 \& 1.0
\end{tabular} ** Use Table B if PHF is known

to find odjust. factor; otherwise
use Population directly. use Population directly.

because data is scarce on the operation of such facilitis; however, approximate relations to several other levels of service are indicated in table 5.

The capacities of turning lanes presented in charts 17 and 18 are applicable to all types of intersections, involving 1 -way streets, 2 way strects, rural highways, and high-type facilities.

Table 5.-Levels of service conversion factors for separate turning lanes

Level of service	Adjustment factor
A and I3	0.90
C	1.00
F	1.20

Turning lanes without separate signal indication

Caparcities of exclusive left- and right-turn lanes where no separate signal indieation is used for the turning moverment are covered in chart 17. The usual form of a separate turning lane is depieted by the sketeh in chart 17 -A for the left-turn lane, and by the sketehes in charts $17-\mathrm{C}$ and $17-\mathrm{I}$) for the right-turn lane. The same capacity relations apply to the form of turning lane that is part of the basie approach width.
left-turn lane.-- The design capacity of an exclusisely left-turn lane, when traffic in all limes on the approach is permitted to move simultaneously on it common green indieation, is given in charts 17-A and 17-B. Additional terms introduced in these charts are as follows:
I_{3} Effective longth of left-turn lane, in feet, for the storage of turning vehieles, exclusive of crosswalk and taper.
V_{3} Volume of traffic turning left on one approach, in vehiches per hour.
T_{3} Trucks and buses timning left, expressed as a percentage of the total leftturning volume V_{3} on one approach.
V_{0} lolume of through traffic on the opposite approach, in vehicles per hour, that is in direet conflict during the same period of time with the left-turning movement on the approach in question.
T_{0} Trucks and buses, expressed as a percentage of the Lotal through volume V_{0} on the opposite approach.
('D3 1) esign capucity of the separate leftturning lane in vehieles per hour.

The eapacity of a left-turn lane is determined primarily by the volume of traffic opposing the left turn during the green signal indication. Normally, on major streets in downtown areas and on wide major streets in outlying areas, it seldom will be possible for more than two vehicles to turn left per eycle (such turns usually have to be made on the amber signal). For design purposes, between
one and two left-turning vehicles accommodated per cycle are assumed to be appropriate. Design capacity of a left-turn lane, for the conditions described, is predicated on 1.6 vehicles per cycle. Chart 17 -B gives this relation in terms of vehicles per hour as dependent upon the length of cycle.

On some streets, where the opposing through volume is relatively light, the capacity of a left-turn lane may be much greater than indicated above. For such a condition, the design capacity of a left-turn lane per hour of green is estimated as the difference between 1,200 and V_{o}, both figures expressed in terms of passenger vehicles. Chart 17 -A provides a solution for this condition, being the relation between $V_{o,} G / C$, and design capacity $C_{D 3}$. To express the capacity in terms of vehicles of all types, factors for the percentage of trucks and buses in the opposing through movement T_{0} and that in the left-turn movement T_{3} are applied. To determine the design capacity of a left-turn lane, $C_{D 3}$ should be found on both charts $17-\mathrm{A}$ and $17-\mathrm{B}$, and the larger of the two results used. Usually on major streets, the values from chart $17-\mathrm{B}$ will govern. The possible capacity of a left-turn lane, whether determined by chart $17-\mathrm{A}$ or $17-\mathrm{B}$, is 1.3 times the design capacity.

Lane length is another control of capacity of an added turning lane. If the lane is not long enough to store the vehicles that can make the turn on the proper green interval, the capacity otherwise possible cannot be attained. Chart $17-\mathrm{E}$ gives the length of added lane needed to accommodate given volumes for different signal timings. With the chart in this form, the lane length can be determined both for capacity volumes and for known smaller turning volumes for a specific condition. Since control values are in terms of passenger vehicles only, the adjustment for percentage of trucks and buses is included.

The required (minimum) length of the added left-turn lane is determined as the distance needed to store 1.5 times the average number of turning vehicles that will accumulate per cycle, recognizing the maximum number that actually can move during the green interval. Occasionally, the maximum number of vehicles that could be stored during some cycles could be twice the average number owing to variations in arrival rates. A desirable length of turning lane, therefore, is also indicated on the chart and is predieated on two times the average number of storing vehicles, or a length 33% greater than the minimum dimension shown. A length of 25 feet is used for each passenger vehicle, and 40 feet for each truck or bus.

The minimum length applies to the full width of the turning lane. This full length is not available for use unless it is preceded by a suitable taper. For normal street conditions, a taper length of 70 to 100 feet may be considered appropriate; for high-type urban facilities and rural highways, it should be 150 to 300 f fet. This taper is in addition to the minimum length of turning lane shown in Chart 17-E.

To determine the capacity of an intersection approach with a separate left-turn lane, when traffic in all lanes on the approach is permitted to move simultaneously on a common green indication, the following procedure should be followed:
(1) Obtain $C_{D 3}$ from chart 17-A or 17-B.
(2) Obtain C_{D} of combined through and right-turning movement from charts $3-6$ or 15, using:
$W_{A}=$ approach width exclusive of left-turn lane, and
$L=0 \%$ 。
(3) Obtain D_{3} from chart $17-\mathrm{E}$ for V_{3} or $C_{D 3}$, whichever governs.
(4) Determine possible capacity, when required:

Left-turn lane, $C_{P 3}=1.3 \times C_{D 3}$.
Through and right-turning movement, combined, $C_{P}=f \times C_{D}$.
Values for f are given in table A on charts $3-6$ or 15 .
In this procedure, the design capacity of the intersection approach cannot be taken as the sum of separate values for the capacity of the left-turn lane and that of the through-plusright lanes because traffic on an intersection approach follows a given pattern, or maintains a consistent proportion of the different move-ments-through, left, and right. Thus, the capacity of the left-turn lane and that of the through-plus-right lanes should be kept separate and, in the analysis, the volumes of the individual movements should be comparec with their capacities.

Usually, the through-plus-right movement determines the G / C on the approach, and the left-turn volume is then checked for capacity of the left-turn lane based on this G / C. If the latter movement is less than design capacity the requirements are met. However, if the left-turning volume exceeds the design capacity of the left-turn lane, the following alternatives may be considered: (1) accept i lower level of service on the left-turn lane, no to exceed possible capacity; (2) increase thi G / C to provide operation of the left-turn lan at design capacity, in which case the through plus-right volume would be less than desigi capacity and would operate at a higher leve of service; or (3) change the signal phasing t include a separate signal indication for th-left-turning movement in order to accommo date it at design capreity.

Problem 15

Determine the G / C required, during th p.m. peak period, to handle traffic withou exceeding design capacity on the east approac of the intersection shown in figure 5 .

Solution: signal timing based on a combine through-plus-right volume is obtained fron chart 4 using $W_{A}=20, T=(30+65) \div(250-$ $75(0)=10 \%, R=250 \div 1000=25 \%, L=0 \%$ (he calluse left turn is on separate lane), $M P=$ 500,000 population, and approach volum (equated to C_{D}) $=250+750=1,000$ v.p.h.; fin $G / C=0.57$.

Then check in charts $17-\mathrm{A}$ and $17-\mathrm{B}$ th capreity of the left-turn lane with this sign: timing. Entering chart \AA with $V_{0}=350 \mathrm{v} . \mathrm{p} . \mathrm{I}$ and procecding to right and bottom wit

0	$\begin{aligned} & \dot{\infty} \\ & \dot{\infty} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	0	$\stackrel{N}{N}$	$\stackrel{+}{\square}$
	$\begin{aligned} & \oplus \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & \dot{0} \end{aligned}$	\circ	$\stackrel{\sim}{\sim}$	$\stackrel{-}{m}$
	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	ㅇ	$\stackrel{\sim}{-}$	$\stackrel{\sim}{\sim}$
	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { す } \\ & \dot{0} \end{aligned}$	○	\pm	$\stackrel{\square}{\sim}$
$\begin{array}{ll} \frac{a}{a} & \\ \frac{a}{a} & \\ \hline \end{array}$	$\begin{aligned} & \bar{a} \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	ㅇ	$\begin{aligned} & \bar{Z} \\ & \hline \end{aligned}$	$\stackrel{\infty}{-}$
	$\begin{aligned} & m \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\circ}{\sigma} \\ & 0 \end{aligned}$	\circ	응	\pm
	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \hat{\alpha} \\ & \dot{0} \end{aligned}$	○	$\stackrel{\bullet}{0}$	은
	1	1	I	1	1
-	I	1	1	I	\|
$\begin{array}{ll} \hline 0 & \alpha \\ i & 0 \\ 0 & \ddots \\ :-4 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & m \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$
		∞	$\begin{aligned} & \frac{2}{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \frac{0}{n} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	2 \vdots 0 0 0 0 0 0 \vdots 0 0 ω

EXAMPLE

$$
\begin{aligned}
& \text { Condilion where volume of left } \\
& \text { turning vehicles can be handled } \\
& \text { without a separate signal } \\
& \text { thdication; before using chart, } \\
& \text { the copacity of teft-turn } \\
& \text { movement should be checked as } \\
& \text { per Speciol Conditions, ltem } 5 \text {. }
\end{aligned}
$$

$T_{o}=20 / 3.50=6 C^{\circ}, \quad G / C=0.57$ and $T_{3}=30$ $240=13 \%$, (see arrows), the design capacity of the left-turn lane is $C_{D 3}=270 \mathrm{v} . \mathrm{p} . \mathrm{h}$. Chart 17-1 governs here as the value of sil v.p.h. for $C=72$ seconds from chart 17-B (see arrows) is much less. Thus, the indicated left-turn volume of $240 \mathrm{v} . \mathrm{p}$.h. can be accommodated.
show design capacity in terms of these factors Right-turn lane capacity is also dependent on the radius of the turn, the amount of pedestrian interference, and the length of lane provided. From available data, distinction has been made for two general conditions in regard to radius and pedestrians. In each case,

Figure 5.-Problems 15 and 20 illustrated.

The fifl required to handle the p.m. peakhour traffic on the east approach without exceeding design capacity, therefore, is 0.57 (eontrolling value for the through-plus-right movement).

The recpuired length of left-turn lane is obtained from chart $17-\mathrm{E}$. Using $V_{3}=240$ v.p.h., $C=72$ scconds and $T_{3}=13 \%$, find $D_{3}=$ 270 feet (see :urrows).
mGint-TLRN LANE.- Charts $17-\mathrm{C}$: And 17-I) give the design capacity of an exchesively rightturn lane, when traffic in all lanes on the approach is permitted to move simultancously on a common green indication. The following additional terms are introduced in the charts:
D_{2} Effective length of right-turn lane, in feet, for the storage of turning vehicles, exclusive of crosswalk :and taper.
" Width of right-turn lane. in feet.
V_{2} Volume of traffic turning right on one approach, in vehicles per hour.
T_{2} Trucks and buses turning right, expressed ats a pereentage of the total right-turn volume, I_{2} on one approach.
$C_{D 2}$ lesign capacity of the separate lane for right-turn movement in vehicles per hour.

The capacity" of aright-turn lane is largely dependent on the propertion of truck traffic T_{2} and the (i (' ratio available for movement of traffie in the lane. Charts 17 -(and 17-1)
the intersection sketches shown with the charts are indicative of these conditions.

Chart 17-C represents average normal curb return, that is, corner radius at edge of pavement, and pedestrian interference, based on an average flow of 600 vehicles per hour of green including 5 pereent trucks. The width of lane is not a factor here becanse either the small corner radius or pedestrian interference, or both, is the principal control. Chart 17-C is applicable generally to ordinary street conditions and geometry of streets in built-up areas.

Better conditions with adequate eurb return and moderate to light pedestrian interference are represented in chart 17-1), based on a design capacity of right-turn lane of 800 vehicles per hour of green with 5% trucks per 10 feet of lane width. With mo pedestrian interference, the design capacity base is 900 vehicles per hour of green with 5% trucks per 10 feet of lane width. Such high-type conditions are not covered directly in the Manual; however, where the movement is free of pedestrians, values corresponding to turning lancs with separate signal indication are suggested in the Manual. Accordingly, service volume bases of 800 and 900 v.p.h. are considered to be indicative of these designs.
The length of right-turn lane required to handle the demand volume of right-turning
vehicles, or the volume corresponding to th eapacity of the right-turn lane, is given it chart 17 -E. Right-turn lame application method of measurement, and the design a taper are the same as discussed for the left turn lane above.

To determine the capacity of an intes section approach with separate right-tur lane, when traffic in all lanes on the approae is permitted to move simultancously on common green indication, the following pre cedure should be followed:
(1) Obtain $C_{D 2}$ from chart $17-\mathrm{C}$ or 17-D.
(2) Obtain C_{D} of combined through an left-turning movement from Charts $3-6$, 15, using:

$$
\begin{aligned}
& W_{A}=\text { approach width exclusive } \\
& \text { right-turn lane, and } \\
& R=0 \% \text {. }
\end{aligned}
$$

(3) Obtain D_{2} from chart $17-\mathrm{E}$ for V_{2}, $C_{D 2}$, whichever governs.
(4) Determine possible capacity, whi required:

$$
\text { Right-turn lane, } C_{P 2}=1.3 \times C_{D 2}
$$

Through and left-turn movement, cor bined, $C_{P}=f \times C_{D}$.
Vialues for f are given in table A , charts 3-6 or 5.1
In this procedure, the design capacity of t. intersection approach cannot be taken as t. sum of separate values of the capacity of ti right-turn lane and that of the through-ph. left lanes, owing to the traffic pattern demal of the intersection. Separate comparisons : the volumes of individual movements wit their capacities are necessary. This aspect his been previously covered with regard separate left-turn lanes.

Problem 16

What is the maximum approach volu. that can be accommodated without exceedis design capacity for the conditions indicated figure 6. What maximum approach volu: can be accommodated without exceeding psible capacity? What should be the length f the right-turn lane?

Solution: Using the same percentage f trucks in the right-turning movement as " the total approach volume, and $G / C=36 / 6$: 0.58 in chart $17-\mathrm{C}$, find $C_{D 2}=330$ v.p.h.

From chart 3, using $W_{A}=22, T=12 \%, I-$ $0 \%, L=5 \%, M P=250,000$ population, d $G / C=0.58$, the design capacity of combind through and left-turning movement is C_{1} 870 v.p.h. On this basis, the right-turn.g volume $V_{2}=(870 \times 25) \div(100-25)=290$ v.f. Because this is less than $C_{D 2}$, the maximn approach volume without exceeding des 11 capacity is $870+290=1,160$ v.p.h.
Possible capacity of the through-plus-it movement is $870 \times 1.20=1,040 \mathrm{v} . \mathrm{p} . \mathrm{h}$. and (1responding right-turning volume is $(1,040 \times 5)$ $\div(100-25)=350$ v.p.h. The latter is than the possible capacity of the right-t "1 lane $\left(C_{P 2}=330 \times 1.30=440 \mathrm{v} . \mathrm{p} . \mathrm{h}\right.$., from et t 17 -(). The maximum approach volume w out excceding possible capacity is, theref : $1,040+350=13900$ v.p.h. The length of rist turn lane required to handle the volume of ") and $350 \mathrm{v} . \mathrm{p} . \mathrm{h}$. is found in chart $17-\mathrm{E} ; D_{2}={ }^{\prime \prime}$ and 330 feet, respectively.

ねəə！－H」OIM HכシOydd $\forall={ }^{\forall} M$
－Use Toble B i PHF is known
10 tind odusi lochor；otherwise
use Population directly

Bumit Left- avi Ramp-Turn Tanes.-For the eomdition where lames are added for both left and right turns, chart 17 is thed as before (0) find capacitios and lengthe of the separate turning lanes. The following steps are heed in the allalysis of the intersection approach:
(1) Obtain $C_{D 3}$ from charts $17-\mathrm{A}$ or $17-\mathrm{B}$, and (im2 from charts 17-C or 17-1).
(2) Obtain (${ }_{D}$ of throngh movemont from charts 3-6, using:

Figure 6.-Problem 16 illustrated.
$W_{A}=$ approach width exclusive of timing lanes, :and
$L=0 \%$ and $R=0 \%$.
(3) Ohtain D_{2} and D_{3} from chart 17-E.
(4) Determine possible capacity, when required:

Left-turn lane, $C_{P_{3}}=1.3 \times C_{D_{3}}$.
light-turn lane, $C_{P 2}=1.3 \times C_{D 2}$.
Through movement, $C_{P}=f \times C_{D}$ (ol)tain values of f from table A on charts 3-6 or 13).

Problem 17

What is the maximum approach volume that can be hatuded on the east approach, shown in figure 7 , without exceeding design capacity? A large lumber mill to the north on the erossroad aceounts for a sizable proportion of wehicles and high percentage of trucks turning right.

Solution: Assuming a large through movement from the cast, so that chart $1 \bar{i}-13$ governs, the design capacity of the separate left-turn lame is $C_{D B}=105 \mathrm{r}$ p. h. The design capacits of the separate right-turn lane, using chart (17-I)
 II), is $\left(D_{22}=480\right): 0.90-4.30$ v.p.h. Factor of (a)! 10 , according to the footunte in chart 17 , is
to account for the rural condition of design eapacity based on level of serviec B.

The design capacity of the through movement is found in chart 15 , using $W_{4}=22$, $T=6 \%, R=0 \%, L=0 \%$ and normal rural conditions; $C_{D}=920$ u.p.h.

On this basis, $r_{3}^{r}=(920<7) \div(100-7-28)$ $=100$ v.p.h., and $V_{2}=(920 \times 28) \div(100-7-$ $2 \mathrm{~K})=395 \mathrm{r} . \mathrm{p} . \mathrm{h}$.

Since F_{2} and V_{3} are less than $C_{D 2}$ and $C_{D 3}$, the maximum approach volume which can be handled without exceeding design capacity is $920+100+395=1,415$ v.p.h.

Turning lanes with separate signal indication

Chart 18 , which is similar to chart 17 , gives the design capacity and the required length of a right- or left-turn lane, when traffic on this lane moves on a green indication that is separate from the green indications for other traffic on the approach-that is, a right- or left-arrow indication for the turning movement. The only additional term introduced in chart 18 is G^{\prime}, the green interval, in seconds, of separate signal indication for the movement of traffic on a separate turning lane.

With a separate signal indication, the rightor left-turning movement is assumed to be free from interference of other traffic streams: alld pedestrian movements. For intersections having normal street geometry, the design capacity of a turning lane, corresponding to level of service C, is $800 \mathrm{r} . \mathrm{p} . \mathrm{h}$. with 5% trucks in the stream per 10 feet of lane width. For high-type intersections with chamnelization, the design capacity of a turning lane, corresponding to a level of service C , is inereased to 900 v.p.h. including 5% trucks per 10 feet of lane width. The base of $900 \mathrm{r} . \mathrm{p} . \mathrm{h}$. for hightype design represents an appropriately adjusted value of the 800 r.p.h. base for normal design indicated in the Manual.

Charts $18-\mathrm{A}$ and 18 -B give a solution for design capacity in terms of G^{\prime} / C, width of lane a $(10,11$, or 12 fect$)$, and percentage of trucks and buses turning, T_{2} or T_{3}. The design capac-
ity of the turning lane for a given set conditions is the sallue whe ther the moremes is (1) the Left or to the right and whe theer th lane is within the normal pavement width, the approach or is all added fane.

The possible capacity of a turning lat with a separate signal indleation is 1.3 timn the design capacity given in charts $18-\mathrm{A}$ ar 18-B. Values for other levels of service m: be adjusted in aceordance with factors give in table 5. For design capacity in mural area predicated on level of service B, the resul in charts 18 -A and 18 -B ustatly would 1 multiplied by a factor of 0.90 .

Chart 18-C provides a solution for the r quired length of turning lane that is identic with chart 17-E. Usually the separate sign phase is green while other through mos ments are stopped, and the storage lame mu be long enough to prevent blocking of through lane. To assure that all or nearly vehicles are accommodated during each pha:the desirable length given in the chart, basi on twice the arerage number of turni: rehicles arriving per eycle, should be usl where possible.

Another consideration in the determinati of turning lane lengths with separate sigt indication is that the lane should also be los enough to allow entry of turning vehicles p: a line of stopped, through vehicles. To achic: this, the length of turning lane can also : determined in chart, $18-\mathrm{C}$ by using the throul volume divided by the number of throus lanes to enter the chart. The minimum leņı found, based on 1.5 times the average numb: of vehicles arriving per cycle, is the desil indicated to meet the requirement of throul traffic storage. Frequently, this aspect c_{i} for a longer lane than may be required just, store the turning vehicles. In any event, 1. larger of the two determinations should used as the length of turning lane.

The procedure for determining the mamum approach volume without exceedis capacity is the same as that previously iplatned in conjunction with chart 17. With left-turn lathe hawing a separate signal in-

Figure 7.-Problem 17 illustrated.

LEVEL OF SERVICE	LOADFACTOR	WA - WIDTH				APPROACH - feet				60
		10	15	20	25	30	35	40	50	
A No Backlog	0.0	-	-	0.95	0.95	0.95	0.94	0.94	0.94	0.93
B	0.1	-	-	0.97	0.97	0.97	0.96	0.96	0.96	0.95
C Design Capocity	0.3	-	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00
D	0.7	-	-	1. 12	1.09	1.07	1.07	1.08	1. 11	$1 \cdot 13$
E Possible Capacity	0.85	-	-	1. 15	1.13	1.12	1. 12	$1 \cdot 13$	1. 15	1.17

cation, the capacity of the through-phas-right lanses is found by using $\|_{A}$ exclusive of the lefteturn lane and $L=0$; in charts $: 3-6$ or 15 . With a right-turn lane having as sparate signal indication, the capacity of the through-plusleft lanes is found by using W_{A} exclusive of the right-turn lane and $R=0 \%$ in charts $3-6$ or 15 .
$D_{2}=220 \mathrm{fecot}$. From Chart $18-\mathrm{B}$, using $G^{\prime} / C=$ 0.B1, $a=12$, and $T_{2}=6 \%$ (see arrows) find on the expressway $C_{m 2}=350$ v.p.h. ; $D_{2}=400$) feet.

Problem 19

What should be the green interval for wach phase on the east approach of the intersection

Figure 8.-Problem 19 illustrated.

Problems 18 and 19 demonstrate the use of chart 18.

Problem 18

Determine the design eapacity and minimum length of a right-turn lane on a major street, 10 feet wide, normal conditions assumed, for which a separate signal indication of 25^{5} seconds is used out of an 80-second eycle, and on which trucks comprise $6{ }^{\circ} \mathrm{c}$ of the total turning traffic. What would be the design capacity and length required for the same turning volume and signal timing if the turning lane is on an expressway at grade (high-type designt?

Solution: From chart $1 \mathrm{~K}-\mathrm{A}$, $11 \operatorname{sing}\left(\mathrm{I}^{\prime} / C=\right.$ $2.5 \mathrm{~S}\left(0=0.31, a=10\right.$, and $T_{2}=60$; (see arrows), find on the major street $C_{D 2}=260$ v.p.h.;
shown in figure is for operation at design capacity, if a total approach volume of 790 v.p.h. is to be accommodited? What will be the green interval for the movement of triaffic on the cross strect?

Solution: Volume of luft-turning traffic is 20 of $790=160$ v.p.h. The volume of through-plus-right moverments to be accommodated on a width of 2! fert is $790-160=$ 6.30 v.p.h. The proportion of green time reguired for this moverment, from chart 3 , with $\left.W_{A}=22, T=11^{\circ} \cdot R=12 \div(100)-20\right)=$ $1 . \sigma^{\prime} ; \quad L=0 \%, \quad M P=\rho(0) \mu$ atation of $6.30,000$ atud $C_{D}=630$, is $\left(i / C^{\prime}=0.40 . \quad(i=80 \times 0.40=32\right.$ sereonds.

The proportion of green time reguired for the separate phatse of left-1 mom lathe is obtained
from chart $18-$ A. Using a volume of 160 v.p.h $T_{3}=15 \%$ and $a=11 \mathrm{f}$ (eet, obtain $G^{\prime} / C=0.1$! Hence $G^{\prime}=80 \times 0.19=1.5$ seconds. The lengt of left-turning lane required, from chart 18 is $D_{3}=200$ feet. Green time available fc movement of traffic on the eross street $8(0-32-15-9($ for $a m b e r)=24$ seconds .

Problem 20

Determine the total length of green indic: tion reguired during the a.m. peak to accon modate the traffic demand at design capacit on the cast approach of the intersection show in figure $\overline{5}$.

Solution: Signal timing based on a combine through-plus-right volume is obtained fro chart 4 using $W_{A}=20, T=(20+50) \div(200-$ $.560)=9 \widetilde{c}_{c}, R=200 / 760=26^{c} c, L=0 \%, M P=$ population of 500,000 , and approach volume $=$ $200+560=760$ v.p.h. ; find $G^{\prime} / C=0.43$.

Check in charts $17-\mathrm{A}$ and $17-\mathrm{B}$ whether th left-turning volume can be handled without separate signal indication. Using in cha $1 \overline{-1} V_{0}=5.50, T_{0}=70 / 5.50=13 \mathrm{C}, \quad(G / C=0$. and $T_{3}=20 / 190=11 \mathrm{C}_{0}, C_{D 3}$ is found to 1 negligible; thus, chart $17-\mathrm{B}$ governs and shos a design capacity of 80 v.p.h. The 190 v.p. turning left, therefore, must be handled eith with a much larger G / C on the east approac or with a separate signal indication for the k turn-three-phase control.

Re-entering chart 17 -A with $V_{o}=550, T_{0}$ 13% at the upper left, and with $\left.C_{D 3}=V_{3}=1\right)$ v.p.h. and $T_{3}=11 \%$ at the bottom, find t. intersection of $G / C=0.70$. Considering a sel rate phase for the left-turning movemet. $G / C=0.23$ is indicated in Chart $18-\mathrm{A}$, usia $C_{D 3}=V_{3}=190 \mathrm{v} \cdot \mathrm{p} . \mathrm{h} ., T_{3}=11 \mathrm{C}$, and $a=11 \mathrm{fe}$.

Thus, without a separate signal indicati for the left turn, 2 -phase control, the G required for the east approach is 0.70. Witi separate signal indication for the left tu. 3 -phase control, the G / C required for the e:1 approach (total) is equivalent to $0.43+(3 / 7 \%$ 0.04 amber $)+0.23=0.70$. The total G / C r the cast approach is the same with eitly phasing. However, the west approach and te. approathes on the north-south street shor be amalyzed before determining the phasit Another alternative for haudling traffic on ' east approach may involve an advance gree. with possibly a lesser total (\dot{r} / C. Soer Parti, Special Conditions, Left-Thuin Lane on Adva' (ireen Signal.

LEVEL OF SERVICE	LOAD FACTOR	W_{A} - WIDTH OF APPROACH - feel								
		10	15	20	25	30	35	40	50	60
A No Bocklog	0.0	-	-	0.95	0.95	0.95	0.94	$0 \cdot 94$	0.94	0.93
B	0.1	-	-	0.97	0.97	0.97	0.96	0.96	0.96	0.95
C Design Copocity	$0 \cdot 3$	-	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00
D	0.7	-	-	1.12	1.09	1.07	1.07	1.08	1.11	1.13
E Possible Capacity	0.85	-	-	1. 15	1.13	1. 12	1. 12	1.13	1.15	1.17

เəょ - H」QIM HOVOyddV=${ }^{\nabla} M$

PART 2-1-WAY FACILITIES

Intersections IVilh . Ferage Condilions:

As with two-w:ly facilities, chatets wore deroloped for c-allation of capateities of 1 -way. strests. For purposes of plamning and preliminary design, chart 2 is presented in simplified form, using average conditions. It allows the determination of design capacity of L-way street approaches with and without parking for ratrous locations within metropolitan arcets of different sizes.

Problem 21

An intersecetion on a 1 -waly street, 42 feed wide, with parking on both sides, located in the outlying business district of a metro areat hatoing a poppulation of $750,0(0)$, is atssumed 10 be operating under aterage eonditions. What is the design cappacity if the signal is so timed that $(f / C=0.60$? What will be the possible capacity?

Solution: In chart '2, Hsing $W_{A}=42, O B D$
 read for metro size of $750,000, C_{D}=1,700 \mathrm{v} \cdot \mathrm{p} . \mathrm{h}$. From Table $2, f=1.28$ and $C_{P}=1,700 \times 1.28=$ $2.170 \mathrm{v} . \mathrm{p} . \mathrm{h}$.

Streels Il ithout Parking

Charts 7,8 and 9 include the adjustments fon speceifie intersection conditions on 1-way strects without parking. Chart 7 is applicable (0) central business districts, chart \& to fringe areas and ontlying business distriets, and chart 9) to residential areas.

Chart format and procedural steps in the solution of problems are similar to those for 2 -wity streets, including tables A and B, which provide adjustments for various levels of serviiere and perak-hour factors. Where bus stops are present, chant $16-1$ is applicable.

Problem: 2?

A 41-foot slrert in a downtown areat of a metro arrea of 24.5 , ()en) poprulation is concorterl (0) 1 -w:ly operation with no parking. (Other
 $B=$ no bus stop), and 3.5 c, of the eyele time tmest be devoted to the cross streed. What is the design c:aptacity of the 1 -waly street if 2-phatse signal control is mised with $C^{\prime}=(6)$ secomels and (atch amb)er interval=3 secomsls:" What will be the possible caplacity?

Solution: (ireent time that mast be allotted (0) the eross street is 3.5% of 60$)=21$ seconds. (ireod lime avilitahle for the 1 -way streer is $60-21 \quad(2>3)=33 \quad$ seconds, and $\quad(\quad / C=33 /$ $60=0.5 \pi$.

Itsing chatt $\overline{7}$, with $H_{A}=41, \quad T=15{ }^{\prime}($, $R=12(i, \quad L=20)_{i}, \quad M P=$ popmlation \quad of 24.5,000 and $G / C=0.55, \quad$ obtain $C_{D}=1,680$ r.p.h.
$C_{P}=1,6 \times 0 \times 1.13=1,0(0)$ v.1).h.

Streets IIth Parking-One Side

Chatts 10 and 11 show calpacity relations for 1-w:ay streets with parking on one side only. The same charts are applicable whether the parking is on the left or on the right side. The only differenee to be accounted for is when bus stops are present. With parking on the right, chart $16-\mathrm{B}$ for bus stops, with parking, should be used to adjust design (alpacity values in charts 10 and 11 . With parking on the left, chart 16 -A for bus stops, with no parking, should be used to supplement the results in charts 10 and 11.

Problem 23

Determine the design capacity of a 33-foot, 1-way street with parking on the right side at a cross street which requires an 18 -second green interval within a 75 -second cycle. The intersection is situated in the fringe area of a city having a metro population of 650,000 . Other conditions are $T=12 \%, \quad R=20 \%$, $L=10 \%$, bus stop on the near side serving 48 buses during the peak hour, and two 3-second amber periods per cyele.

Solution: Enter chart 10 with $W_{A}=33$ feet and proceed through the chart in accordance with the conditions given, using $(i / C=1.00$ $18 / 75-6 / 75=0.68$ (see arrows); read $C_{D}=$ 1,270 v.p.h. In chart $16-\mathrm{B}$, using 48 buses per hour, fringe area, and $W_{A}=33$ feet, find a local bus factor of 1.09 . Design capacity is $C_{D}=1,270 \times 1.09=1,380 \quad$ v.p.h.

Problem 21

If, in Problem 23, all conditions remain the satme, exeept that parking is shifted from the right to the left side, what will be the design capacity?

Solution: $\left(^{\prime}{ }_{D}\right.$, as above, is 1,270 V.p.h. ('hart 16-A, with no parking, however, is applicable and produces a local bus factor of (0.xi). I exigh capacity is $C_{D}=1,270$. 0.8 . $=$ 1,0s(0 v.p.h.

Sireets Il ith Parking-Both Sides

C'apalcitise of l-way strects with parking on both sides are eovered in chart 12 for downlown :und fringe areas, chart $1: 3$ for ontlying business distriets, and 14 for residential areats.

Problem 25

Determine the desimn (alpateity and possib) c:apacity of a 41-foot, 1-wily stroct with par ing on both sides in the ($B D$ of a metro ar with a population of 175,000 . Other conditio: are: $T=15, \quad R=28^{\circ} \mathrm{c}, \quad L=9 \%, \quad G / C=0.4$ and no bus stops.

Solution: Proceed through chart 12 aecordanee with the given conditions (s arrows) ; find $C_{D}=900$ r.p. .h.
$C_{P}=900 \times 1.28=1,1.50$ v.j. h.

Intersections With Separate Turnit Lanes

Separate turning lanes on 1 -way strecs have the same operational characterist and capacities as comparable turning lat on 2-way facilities. Capacities of exchusi left- and right-turning lanes without separate signal indication on 1 -way approach may be found in charts $27-\mathrm{C}$ and $17-\mathrm{D}$, al required lengths in chart $17-\mathrm{E}$. With separ: signal indication, the relations in chart 18 a applicable. The procedures for evaluatis service volumes and capacities of 1 -way : proaches with turning lanes are the same for 2-way facilities. A left-turn lane wh separate signal indication is not as advatageous on a 1-way approach as on a 2-uy approach with opposing traffic. Howev: separate signal indleations for throing lat on 1-way approaches may be employed a some chammelization arrangements or in ctjunction with separate perdestrian phases.

Problem 26

If all the conditions are the same as problem 22, execpt that an 11-foot lane wit a the 41 -foot street is desigmated exclusis? for left turns, what is the design calpacit! if the approach?

Solution: For the through-plus-right me mont from chart $7, \quad u \operatorname{sing} W_{A}=41-11=3$ (

 1,2が1 v. p.h.

Left-turning volume $=(1,280 \% 0.20$: $(100-20)=320 \quad$ r.j.h. Check for des.11 ('apsacity in chant 17-C, using $G / C=0.55$. 1 $\mathrm{T}_{3}=1 . \mathrm{S}_{0}^{\circ}$, is $C_{D}=300$ v.p.h. ; $C_{P_{3}}=300 \times 1$. 390 v.1).h.

If the left-tam lane is allowed to operit slightly mater level of service C, operam equivalent to design eapacity in the appro th would be $1,280+320=1,600$ v.p.h. If moverment is to exeered design (iupacity, :1p)roach volume would be $1,200+300=1$, " \quad.p.h.

NOTE:
Condition where volume of left
iurning vehicles can be handled
without a separate signal
indication; before using chart,
the capacity of left-turn
movement should be checked as
per Special conditions, ltem 5 .

0HAARTS 1-1.5 cover the gemeral conditions foumd al 2-w:ly and 1-w:y intersections muler traffie signal comtrol. In addition, there arce a momber of other conditions in the analysis athd design of intersections for which ecertain siep)s of instructions are to be followed in applying the charts.

Determination of Levels of Service Other Than al the Designated Design Capacity

Levels of servies recommended in the Mancal for design of intersections are C for mban conditions and B for rural conditions. Becaluse of the complexity of intersection oferation and the numerons adjustment factors requited, some of which are empirical, there seems to be little justification for considering other leveds of service in design. Accordingly charts $1-14$ and $17-20$ are predicated on a hesign capacity corresponding (0) Lend of service (\therefore Chart 15), representing rural conditions, is hased on level of service B. Possible capacity, or level of servied E, is also considemed in the analyses to estahlish the maximum attainable somvere volume. Possible (alpacity is determined by the application of consersion factors in table 2 to the chart design capacity values.

If desired, other levels of service call be (xaluated by the application of factors listed in lables 3,4 and 5 , ats follows:
(1) To find service volume for some other level of service for a given width of approach and other conditions: fiud design capacity on chart and multiply result by alppropriate fater in table 3,4 or 5 .
(2) To find width of approach or G / C to aceommodate a givent traffie volume at a desired level of service: divide traffe volume by appropriate factor in tatble 3,4 or $\overline{\text { a }}$ and conter chat to find the recguired element.
(3) To determine the level of serviec for a) given traffic volume when all the intersection appproath conditions and signal timing are known: find design capacity in chart: divide traffic volume by design capacity: compare result, V^{V} / C_{D} ratio, with factors in lable 3,4 or is to dedermine level of servies. An illustration of this procedure may be foumd in problem ? ? 9 .

Signal systems Other Than fixed Time

The capacity chams and analyse prosented thus fat at predicaled on fixeditime signal romerol: that is, the signal setting rematins machanged during the analysis pertod. This atso pertains 10 signal timing which maty be varied during certain periods of the daysuch ats iz-dial control for which a different signal setting is hised during the morning peak preriod, the off-peak periods, and the exping peak pertiod. C'tilization of the (i ('ratio int
(:alpacity amalyses is also applicable, with some modification, to atethated eontrol and progressive systems.

Fully actuated control

The proportion of green time during a given hour, or the aserage G / C, for all intersocetion approath operated under fully actualted control is the sum of all the green intervals in seconds during the hour divided by 3,600). Becallace the green interval varies genceally in aceordance with demand, the actual proportion of green time within the hour cammot be predicted. However, the G/C ratio, based on the average green interval for the hour, would indicate the proportion of green time used. Therefore, since the signal timing varies approximately with the demand flow of whicles per hour per lane on the several approaches, in accordance with relative capacities of cach approach, there is a tendcney for the average G / C ratios to approach the G / C ratios of fixed-time control. That is, the average $G /\left(C^{\prime}\right.$ ratio for a given approach muder actuated control is approximately egual to the ratio of the demand volume per lane on that approach to the sum of the demand volumes per lane on the two approaches controlling the signal timing during the hour, less the proportion of eycle used for amber periods. This, in essence, is the procedure used for capacity analyses of intersections operated under fixed-time control. Therefore, for fully ucluated signal control the same procedure as for fixed-time control may be employed as a close approximation of the G / C ratios for purposes of planning and design of intersections. For improvement of existing intersections, field studies to determine alserage G / C ratios should be undertaken to achieve more preecise results. Actually, the fully actuated control is more ceffecient than fixed-time control becallise the effect of full actuation is to more nearly fill or load each green interval. Accordingly, the method suggested for analyses in design provides a conservative approach.

Semi-actuated control

The estimation of the average G / C ratio requires consideration of the individual characteristics of the installation, including the green time setting on the minor approach and the minimum evele length used. For intersection design, the following procedure is suggested:
(1) I trial aterage G / C for the eritical approath on the minor road is determined, 1nsing an appropriate chart, ats if the intersecetion wers operated under fixed-time control.
(2) Csually, the green time on the minor road is kept to a minimum taking the hourly :pppratch volume and peak-hour factor into consideration, but manally not lese than a fixed interval of 15 seconds.
(3) A minimum ('value is seleceted which would yield a (if (' ratio approximately equal to or greater than that originally calculated.
(4) (icmerrally, minimum C is selfected be not greater thath 150 seconds, preferab 120 seconds or less. When there is no deman on the cross road, the green phase on th major facility continues and C is extende However, when there are repeated calls fro the side roadd, the signal alternates in accor : Hnce with the minimum C.
(5) The arerage (i / C on the minor road then adjusted to these controls and th design of the major road approathes is pree cated on the remaining available G / C.

Local practice in the use of the length the green interval on the minor road and t minimum cycle length may temper the valu: given in the above procedure. Caution shon be exercised in determining the initial $(i / C$ the first step of the procedure becaluse sen actuated control is used along major highwa in conjunction with cross roads that car light volumes and frequently accommoda peaks of short duration, such als 1 in or minutes. In such situations, an hourly ir of flow should be used as a basis for deta mining the G / C ratio and the $(t$ interval the minor road. The procedure for analyzil approaches with high peaking characteristi: is covered in this Part under the headi: Intersections with High Peaking Characteristi.

Progressive signal systems

Signalizations that provide coordinatin between suceessive signals designed to ke platoons of traffic moving continulu: through intersections, yield somewhat higl capacities than do isolated signals or series signals without coordination. Stated anotl: way, for the same volume and G / C, the ley of service provided at in intersection withir. progressive signal system would be somewt higher than at an isolated, fixed-time sigil controlled, intersection. The increase service volume or capacity is difficult estimate and may not be significant unks near perfect progression is acheeved. To safe, the increase usually is not taken in, consideration in the design of geomet. recpuirements of intersections. However, 1-way streets with very efficient signal progre sion load factors equal to or approaching 1.1 might be achieved. The design and possil? capacities under such circumstances, therefo. may be increased using tables 3 and 4 , by th ratio of the f value for a load factor of 1.1 (extrapolated) to the f value for a load fact of 0.85. I'sually, these values calculate to. reasonably consistent ratio of 1.05 ; the design and possible capacities for signaliz! intersections within an exeellent progressi system maty be determined by multiplyi. the chart values by 1.0 . .

Problem 27

A 2-way minor road intersects a maj street in an outlying residential area of a ci having a metro population of $1 / 2$ million. T major facility requires a G / C of not less th.

0.75 . The minor road has a demand volume of $200 \mathrm{v} . \mathrm{p} . \mathrm{h}$. in the predominant direction; other conditions on the approach are: $T=28 \%, R=$ $20 \%, L=35 \%$, no parking, and no bus stops. A semi-actuated signal control is needed with a green interval preferably not less than 18 seconds on the crossroad. Determine the number of lanes on the minor approach and the signal timing for operation at design capacity.

Solution: Since the major facility is not to be altered, the number of lanes required on the minor approach may be estimated on the basis of a fixed-time signal. Because the average cycle is apt to be long, assume that only 5% of the cycle would be devoted to amber periods (A). The average G / C for the minor approach equals, tentatively, $1.00-0.75-0.05$ $=0.20$. Using the indicated conditions in chart $4, W_{A}=19$ feet, minimum. Employing 11 -foot lanes for this facility, a W_{A} of 22 feet is se-

Intersections With High Peaking Characteristics

Intersection capacities vary with city size and peaking characteristics. Normally, peakhour factors are within a range of 0.80 to 0.90. Where such factors are not available, which often occurs in design, the capacity analysis may proceed with the knowledge only of metro population as provided for in charts 3-14.

Some intersection approaches serve localized traffic generators that produce high peaks within a 15 - or 30 -minute period, while the other approaches at the same intersection may be operating under normal peaking conditions. The low peak-hour factor on one approach under such circumstances should be accounted for in evaluation of capacities. This may be done, if the peak-hour factor is 0.70 or more, by using an appropriate adjustment factor in

Problem 28

In the outlying district of a metro areas one million population, a road intersecting n arterial facility serves an industrial plant A G / C of 0.38 is available for moving traffien the p.m. peak on the crossroad. During period the volume in one direction on te critical approach is 840 v.p.h. ; and, dung the highest 15 minutes of the hour, there flow of 390 vehicles as determined by fid measurements. Other conditions are: $T=0$ $R=38 \%, L=7 \%$, no parking, and no stops. Determine the number of lanes requibe on the crossroad approach.

Solution: Because of the high peak witm the hour, a PHF of $840 \div(4 \times 390)=04$ should be used in the analysis. To find te required width, the chart has to be ented with the demand volume. The demand ilume, however, must be adjusted for the speal condition of low peak-hour factor. The \&

LENGTH OF WIDENING BEYOND INTERSECTION

LENGTH REQUIRED FOR: *			TAPER feet
ACCELERATION		MERGING	
DESIGN SPEED	D_{b} - teet		
40	200	$D_{b}=12 \times G$	200
50	525	(G, Green interval in seconds)	250
60	900		300

* Use the larger of two values
but not less than 300 feet

\ddagger Use the larger of two volues
but not less than 200 feet

Figure 9.-Intersection with widened approaches, length requirements.
leeted. Tsing this width and other conditions, als before in chart 4 , a G / C of 0.16 is required to hatle 200 v.p.h.; or, holding $G / C=0.20$, a volume of 250 v.p.h. can be accommodated.

The minimum cycle length may be calculated as follows: G / C on major street, plus (i on minor street $\div C$, plus A (per cycle) $\div C$ equals 1.0(): for $G=18$ seconds, and $A=6$ seconds, $\quad 0.75+18 / C+6 / C=1.00$, or $C=95$ seconds. If a longer minimum cyele of, perhaps, 120 seconds is desired, $(i$ on the minor road can be increased to $120 \times 20=24$ seconds; or, if 20 seconds of green is set with a 120 -second cyele, $G / C=20 / 120=0.17$; then, additional green time can be devoted to the major strect, so that $G / C=(1.00-0.17-0.05)$ $=0.7 \mathrm{~s}$.
charts 3-14, found in table B on the charts for the particular metro size and $P H F$. Where the PHF is less than 0.70 in urban areas, the following procedure should be used:
(1) Find C_{D} in charts 3-14, using metro size directly:
(2) Divide C_{D} by the following average peak-hour factors: 0.80 for metro population of 50,000 or less, 0.8.5 for metro population of 100,000-750,000 and 0.90 for metro population of $1,000,000$ or more.
(3) Multiply above by $P H F$ determined for the approach to establish design capacity.

In rural areas, find C_{D} in chart 1.5 using $P H F=1.00$; then, multiply result by $P^{\prime} H F$ relevant to the approach to determine design capacity.
justed volume, as previously explained, it reversed for this problem, is $840 \times 0.90 \div 64$ $=1,400 \mathrm{v} . \mathrm{p} . \mathrm{h}$. Proceed through chart 4 fim bottom to upper left using: $C_{D}=1,400, C$ $=0.38, M P=$ population of $1,000,000, L=i$ $R=30 \%$ or more, and find $W_{A}=36.5 \mathrm{ft}$. Provide three 12 -foot lanes, or $W_{A}=36 \mathrm{ft}$

IIidened Approaches

Intersection capacities can be significally increased by widening the traveled w: through the intersection. This may be cocomplished in conjunction with one or nte approaches by adding a traffic lane fo a certain distance in advance of and beyond in crossroad; or, on streets with parking, te additional lane through the intersection

TABLE A - ADJUSTMENT		NT FACTOR (f) FOR					VEL	OF	SERVICE	
LEVEL OF SERVICE	LOAD FACTOR	$W_{\text {A }}$ - WIDTH				APPROACH - feet				
		10	15	20	25	30	35	40	50	60
A No Bockiog	0.0	-	-	-	0.88	0.85	0.84	0.83	0.83	0.82
B	0.1	-	-	-	0.91	0.90	0.90	0.89	0.88	0.88
C Design Capocity	0.3	-	-	-	1.00	1.00	1.00	1.00	1.00	1.00
D	0.7	-	-	-	1.17	1.17	1.17	1.18	1.22	1.25
E Possible Capacity	0.85	-	-	-	1.25	1.25	1.25	1.27	1.32	1.37
EXAMPLE										
Given	MP $=175,000$					$C_{0}=900 \mathrm{rph}$				
$W_{A}=41^{\prime}$										
$T=15 \%$ $R=28 \%$	$\begin{array}{ll} \text { C.B.D. } \\ \text { G/C }=0.48 & C_{P}=900 \times 1.28=1150 \mathrm{vph} \end{array}$									
L $=9 \%$	$B=\text { No bus stops }$									

[^4] DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS ONE-WAY STREET - PARKING BOTH SIDES \& FRINGE AREA
CHART 12 $C_{D}=$ DESIGN CAPACITY OF APPROACH - vph FRNG. C.B.D.
be supplied by partial climination of parking. Where the extra lane introduced is of sufficient length preceding and following the intersection, the service volumes and capacities will correspond to those for the total width of approach ats if the added lane were continllous indefinitely.

Inereased width through intersection-no

 parkingWhere the traveled way is widened for a sufficient distance in advance of the intersection and the same widening is continued for a sufficient distance beyond the intersection, enter charts $3-4,7-9$, or 15 with W_{A} equal to the total width of one approach including the widening on that approach; then use the chart in the normal manner. Required minimum lerigths of widening are presented in figure 9 . The larger of the two values indicated in the figure for the approach and departure should he used, but not less than 200 and 300 feet, respectively. The widening thus determined would be preceded and followed by appropriate tapers in accordance with design speed.

Elimination of parking through intersec-

 tionWhere parking on a street approach is eliminated in adrance of the intersection and beyond the intersection for a sufficient distance: nse chart 3-4 or 7-9, instead of chart 5-6 or 10-14, as if there were 110 parking on the strect. Required minimum distances for dimination of parking to achieve this condition are: First, climination of parking in advance of the crossroad, measured back from the stop line on the approach, should be for a distance in feet cqual to or greater than 8 times the green interval in seconds ($8 G$), but not less than 250 feet; and second, climina$t \mathrm{im}$ of parking beyond the cressroad, measured forward from the stop line on the approach, should be for a distance in feet cqual to or greater than 12 times the green interval in seconds ($12 G$), but not less than 350 feect

Problem 29

An isolated intersection an a crossroad in at rural area with nomal peaking characteristies is causing congestion on at thane, divided highway. The 2-phatse signal control is timed in balance with the demands and capacities of the intersecting facelities :and allocates to the major highway a G / C of 0.65 within a 7 - second eycle. All lanes are 32 feet wide, and separate left-turn lanes are provided in the median. 1)esign speed is $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. ()ther conditions on the critical approach are: $T=$ $8_{i c}, R=10 \%$, $L=5 \%$. Determine the level of service on the one approtech of the divided highway during the peak hour when the total approach volume is 1,400 v.p.h. Determine to what degree congestion may be alleviated by widening the highway through the intersection, :ls shown in figure 9, but using the same signal timing. If the uninterrupted flow design capacity of the highway at level of service 13 is $1,850 \mathrm{r} \cdot \mathrm{p} . \mathrm{h}$., how would the signal timing be adjusted-assuming that the crossroad call be improved to operate on a lesser green-time allocation with a G of not less
than 18 seconds-to bring the intersection design capacity in balance with the remainder of the divided highway?

Solution: Becanse the left-turning movement is accommodated in a separate lane, the through-plus-right movement is 95% of 1,400 , or 1,330 v.p.h., and R with the left-turning movement removed is $10 \div 0.95=11 \%$. In chart 15 , using $W_{A}=24, T=8 \%, R=11 \%$, $L=0 \%$ and $G / C=0.65$, find $C_{D}=1,100$ v.p.h. Ratio of approach volume to design capacity is $V / C_{D}=1,330 \div 1,100=1.21$. In table A of chart $15, f$ for level of service C is 1.11 , and for level D is 1.23. Operation, therefore, is at level of service D.

By widening the approach through the intersection by one lame, C_{D} is increased to 1,530 v.p.h., using $W_{A}=36$ feet and no change in other conditions. Ratio of approach volume to design capacity is $V / C_{D}=1,330 \div 1,530$ $=0.87$, which according to table A in chart 15 , operation would be at level of service A. To achieve this design capacity, the lengths of added lane in advance of and beyond the intersection, in eath case measured from the stop line on the approach, are as follows in accordance with figure 9:
D_{a}-for deceleration, length is 200 feet; for storage, using a volume of $1,330 \div 3=440$ v.p.h. in chart $18-\mathrm{C}$, length is 480 feet; D_{a} required is 480 feet plus taper of 225 feet.
D_{b}-for acceleration, length is 525 feet; for merging, length is $12 \times 0.65 \times 74=570$ feet; D_{b} reguired is 570 feet plus taper of 250 feet.

To bring the design capacity of the widened intervection in balance with the uninterruptedflow design capacity of the highway approach, 1,850 v.p.h., the signal timing must be adjusted to accommodate a through-plus-right volume of $1,850 \times 0.95=1,760 \quad$ v.p.h. Using chart. 15 with the other conditions as before, find $G / C=0.74$. To maintain a green interval of not less than 18 seconds on the crossroad (previously available), assuming an 8 -second amber per cycle, the new cycle length is determined from the relation $0.74+18 / C+8 / C=$ 1.00; $C=100$ seconds. The lengths of widening to maintain volumes equivalent to design capacity become $D_{a}=870$ feet (or minimum of 650 feet), and $D_{\iota}=890$ feet.

Check for Capacity of Lefi Turn

Any intersection approach on a 2 -way street that docs not involve a separate leftturn lane should be chocked for capacity of the left-turn movement. This may be done in the same manner as for a separate leftturn lane is the number of left-turning rehicles that caln be accommodated with 2-phase control, whether on it separate lane or not, is governed either by the volume of traffic opposing the left turn or by the length of cycle. Charts $17-\mathrm{A}$ and $17-\mathrm{B}$ should be used to check the capacity of the left-turn movement. Euch a chacek is necessary for every intersection involving 2 -way streets. If the volume of lefi-turning vehicles exceeds the possible capaceity as determined in charts 17-A and 17-13, serious congestion may result, the overall eapacity of the approach may be materially reduced, and the results determined in charts 3-15 would be crroneous.

When this is encountered, the lefi-turn movement should be prohibited or, if feas l. accommodated on a separate signal indicat.m

Problem 30

Check whether the left-turn volume it problem 6 can be handled satisfactorily.

Solution: Left-turn volume is 5% of 101 or 60 v.p.h. For the conditions given, found in chart $17-\mathrm{B}$ that upwards of $80 \mathrm{v} \cdot \mathrm{h}$ can be accommodated at design capa therefore, the solution in problem satisfactory.

Problem 31

A 23-foot approach on a 2 -way stre without parking in the central business is trict of a metro area of $1 / 2$ million populame operates under the following conditins approach volume 950 v.p.h., of which 30 v.p.h. turn right and 210 v.p.h. turn it opposing through volume during the sme period is 670 v.p.h.; trucks are generally ' on all movements ; a 36 -secoud green with : 2 -phase, 60-second cycle is allotted to tie street; there are no bus stops. Determinc he level of service on the approach.

Solution: A left-turn cheek must alwaybe made as a first step in the problem solutio on a 2 -way facility controlled by a 2 -p hase sital. In chart 17-A using $V_{0}=670, \quad T_{n}=C_{i}$ $G / C=0.60$ and $T_{3}=8 \%$, it is found thatew left-turning vehicles can be handled ding the given phase. Chart 17-B, therefore, is ied and indicates that 96 v.p.h. turning leftan be accommodated at design capacity nd $96 \times 1.3=12.5$ v.p.h. at possible capacity.

Becaluse the left-turning volume of 10 v.p.h. significantly exceeds the capacity, lee laft lane on the approach may be lar ly nullified as a carrier of straight-thregh traffic during the peak hour. If this cond on were ignored in the analysis, an erron us answer from chart 3 would indieate 860 v .h. as the design capacity of the approach-ung $W_{A}=23, T=8 \%, R=14 \%, L=22 \%, M=$ population of 500,000 and $G / C=0.60$-nd table A on the chact would indicate that, th a factor of $9.50 / 860=1.11$, operation is at liel of service D. Under these circumstances tre is no way of determining the level of servirat which the intersection approach would be operating. For example, if the left lane as occupied by vehicles waiting to turn eit throughout the hour, capacity would be (cquivalent to just one lane or C_{D} of aboutuly v.p.h. and C_{r} of about $720 \mathrm{v} . \mathrm{p} . \mathrm{h}$. The latt is approximately equal to the through-p s right volume of $9.50-210=740 \mathrm{v} . \mathrm{p} . \mathrm{h}$. Tis, the through-plus-right movement would perate at approximately the possible capit! and the left-turning movement would exed possible capacity or would operate at les of service F. A solution to this problem will entail either a prohibition of the left the if all approach widened to include an exchive left-turn lane using a separate signal phat

Non-Deterring Turning Moteme's

On the intersection approach of a 2 -ay facility where the right-turning patl is reasonably direct and pedestrian interfer " is minor, the right-turning movement male

considered a part of the through movement, in which case $R=0 \%$ would be used in the chart solution.
()n the intersection approach of a 1 -way facility where the turning conditions are as deseribed above, either the right- or leftturning movernent, or both, may be eonsidered a part of the through movement. Such conditions are likely to occur at high-type, chamelized intersections where turning movements can be aceommodated as efficiently as through movements.
left turn is sufficiently light so that it does not require a separate indication, an advance green period may be employed for the first left-turning movement to meet the capacity requirements. The advance green may be in the form of a separate green arrow introduced at the beginning of and simultancously with the circular green indication for the through movement. The opposing movement is stopped by a red indication while the green arrow is in force. When the green trrow is turned off without using an amber period,
through and left turns move on the approst, is equivalent to the green arrow period prtiously described. When the flashing stops id the green becomes steady, the left turng traffic is under the influence of the oppoing through traffic. This form of control, whe a full third phase is not required simultaneoly to accommodate the opposing left-turi movements, provides considerable efficie.! because of the short advance green interil. usually 6 to 12 seconds long, the no ane period at termination of advance green, 10 the opportunity for left-turning movementr continue during the remaining green phass n the approach. The total number of left-turnip vehicles that can be handled by a signal con:oi incorporating an advance green indicaju may be determined as follows (The Mana does not include data or analyses of interetions using adrance green indication for turns; the following material was develo to fll this roid in design and operationar arterial streets.)
(1) Advance Green Period- Use the no ograph in figure 10 to determine the numbe vehicles accommodated per hour at deyn capacity during the advance green indicati.
(2) Remaining Regular Green IndicatioUse charts 17 - A and $17-\mathrm{B}$ in which G / i is exclusive of the advance green to deterime the number of vehicles accommodated al hour at design capacity.
(3) Total Design Capacity of Left-m Lane-Sum of design capacities in (1) and?).
(4) Total Possible Capacity of Left-on Lane-Total design capacity in (3) multip d by 1.3 .

Problem 32

If in problem 20 an advance green indat tion was used for the left-turning movemit. determine the total length of green inteal required during the a.m. peak to accomodate the traffic demand at design capa.y on the cast approach (see figure 5).

Solution: It has already been determid in froblem 20 that the number of left-turng vehicles that can be handled at design cajcity during the full green interval (2-plse control) on the east approach is $80 \mathrm{v} . \mathrm{p} . \mathrm{h}$. Ith a cyele of 72 seconds (chart $17-B$). If m ? advance green is introduced, the numbe of vehicles turning left that would have to beccommodated by the advance green is (1!-$80)=110$ v.p.h. Enter at bottom of no (1)

[^5]| － 28.1 | $2 \varepsilon .1$ | 22.1 | ¢2．1 | s2．1 | sz．1 | － | － | － | ¢8．0 | Kiljodoj ralssod \exists |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ¢2．1 | 22．1 | 81.1 | 21.1 | 21.1 | 21.1 | － | － | － | 2.0 | \bigcirc |
| 00.1 | 00.1 | 00.1 | 00.1 | 00.1 | 00.1 | － | － | － | \＆．0 | KHjodoj ubisal 3 |
| 88.0 | 88.0 | 68.0 | 06.0 | 06.0 | 16.0 | － | － | － | 1.0 | 8 |
| 28.0 | £8．0 | £ 8.0 | －8．0 | ¢ 8.0 | 88.0 | － | － | － | 0.0 | 6014008 ON \forall |
| 09 | Os | Ot | ¢ \＆ | $\bigcirc \varepsilon$ | s 2 | \bigcirc O | SI | 01 | | ヨว＾＾yヨS 10 าヨィヨา |
| なる）－ | | | HכVOyddV | | | 101 M | ${ }^{\nabla} \mathrm{M}$ | | | |
| $301 \wedge$ | 3 S | 10 | $73 \wedge$ | 7 ¢ | J | b）y | 0 | | 15 | จ－\forall ヨาgヤ1 |

เəә！－H1OIM HOVOyddV $={ }^{\forall} M$
TABLE B－ADJUSTMENT FOR
METRO SIZE AND PHF

| METRO AREA | PEAK HOUR FACTOR | | |
| :---: | :---: | :---: | :---: | :---: |
| POP．（1000＇b） | 0.70 | 0.75 | 0.80 |
| Over 1000 | 1.00 | 1.05 | 1.09 |
| 1000 | 0.97 | 1.02 | 1.07 |
| 750 | 0.94 | 0.99 | 1.04 |
| 500 | 0.91 | 0.96 | 1.01 |
| 250 | 0.85 | 0.90 | 0.95 |
| 175 | 0.82 | 0.87 | 0.92 |
| 100 | 0.80 | 0.85 | 0.89 |
| 75 | 0.77 | 0.82 | 0.87 |

POP．（1000＇s）	0.85	0.90	0.95
Over 1000	1.14	1.19	1.24
1000	1.11	1.16	1.21
750	1.09	1.14	1.18
500	1.06	1.11	116
250	1.00	1.05	1.10
175	0.97	1.02	1.07
100	0.94	0.99	1.04
75	0.92	0.96	1.01

＊Use Toble B it PHF is known to find odjust．factor；otherwise
use Population directly．
graph in figure 10 with a volume of $110 \mathrm{v} . \mathrm{p} . \mathrm{h}$. and proceed up and to the left using the conditions: $n o$ pedestrians, $T_{3}=11 \%$ and $C=72 ;$ read $\left({ }_{H}=9\right.$ seconds, or $G_{A} / C=9 / 72=$ (0.13.

The G / C recpuired for the through-plus-right movement on the east approach is 0.43, given in chart 4 and shown in problem 20. If $G / C=0.43$ is also required on the west approach, the total green time requirements on the east approach would be $G / C=0.43+$ $0.13=0.56$ in this solution, compared with 0.70 in problem 20. On the other hand, if G / C of 0.30 or less was required on the west
cedures are approximations developed for design purposes only. Right turns controlled by yield sign, and those permitted on red after stop, assume continuously high loading on the street being entered by right turns. The values given, therefore, are considered to be safe for design.
(1) Continuous right-turning movement on an exclusive lane with an auxiliary lane on the crossroad and turning speeds upwards of 15 m.p.h.-Design capacity is estimated to be 1,200 passenger cars per hour (p.e.p.h.), or $1,200 \div-(1+t)$, where t is the proportion of trueks in the turning movement expressed
handled during the green indication on bie approatch. These merges are consideredin take place as a spill-over from the green ilication on the approach, plus an oceasiyal entry during the green indication on the eris road; the several vehictes per eyele are garded as including an average proportio trucks. The design capacity, therefore, is a found in chart $17-\mathrm{D}$ for the G / C ratio on 1 approach as a whole, plus $10,800 / \mathrm{C}$ v..h. Possible capacity is 1.3 times design capars
(3) Right-turning movement on exclusive controlled by signal with turn permitted on r The condition is similar to (2), but less effici

Figure 11.-Capacity of double turning lanes.
approteh, the comparison would be 0.4.3 with 0.71): or the asailathe time for amber and for green on the north-south street would be Gif: of 0.557 in this solution and (i) $(?$ of 0.30 in the solution of problem 20 .

Right-Turnins Motement-Conlinuous. Comtrolled by Vield Sign. or Permilled on Red ifter stop

Sipecial right-turning controls for continuous right-turning mowement or for right-turning movement cither controlled by yield signs or permited on red after stop, are not covered in the Manual. The following suggested pro-
decimally, that is, perecentage of trucks divided by 100. Possible capacity is approximately 1.3 times design capacity:
(2) Right-turning movement controlled by yield sign at the point of crossroad entry, and not by the intersection signal, on an exclusively right-turn lane with channelization-Capacity depends on the availability of gaps on the crossroad. Because gap atwalability is difficult to predict, it is assumed that during peak periods there will be little, if any, opportunity for the right-turning movement to merge when the crossroad has a green indication. For design purposes it is assumed that an average of 3 rehicles canmerge per eycle in addition to those

To find design capacity, use chart 17 17 -D, plus 2 vehicles per eycle or $7,200 / C$ v.li. Possible capacity is 1.3 times design capat

Capacity Controlled by Intersecon Exit

Gemerally the capacity of the approthcontrols the capacity of the intersection some locations, however, the width of tral a way beyond the intersection may be restrita or traffic may back up onto the interse im exit from the intersection ahead. The 1 at situation may be corrected by coordini ll of signals and by the use of lagging or le:itue green indieations. Where the traveled:

Solution

$$
\begin{aligned}
& \text { - NOTE: } \\
& \text { Condition where volume of left }
\end{aligned}
$$

$$
\begin{aligned}
& \text { EXAMPLE } \\
& \begin{aligned}
\text { Given }
\end{aligned} \\
& \qquad \begin{aligned}
W_{A} & =22^{\prime} \\
T & =15 \% \\
R & =12 \%
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solution } \\
& \qquad \begin{array}{l}
C_{D}=740 \mathrm{vph} \\
C_{p}=740 \times 1.29=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { palpung aq vas saljupa buivant } \\
& \text { that to amnion aram yortipuos }
\end{aligned}
$$

$$
\begin{aligned}
& \text { movement should be checked os } \\
& \text { per Special Conditions, Item } 5 \text {. }
\end{aligned}
$$

available for moving weheles is narrower on the intersection exit than on the intersection approach, capacities may be estimated as follows: Enter charts 3-14 with W_{A} equal to the width of the exit. Exit width is measured from division line to curb on 2-way strects, and curb to curb on 1-way streets. Proceed through chart in usual manmer, but use $T=$ percentage of trucks and buses in through movement only, $R=0 \%, L=0 \%$, $M P=$ metro population, and G / C equivalent to that used on the approach; adjust for bus stop only if it is on the far side, using $L+R=$ 0% 。

Double right-or left-turn lane on 2 exclusive lanes

The capacity of a double turning lane may be determined in accordance with the procedure outlined in figure 11 using chart 18-B in combination with the nomograph in figure 11. The procedure is based on the following: According to the Manual, at a usual intersection the second or outer lane of a 2 -abreast turning movement is capable of handling a service volume or capacity of 0.8 times the value for a turning lane indicated in charts 17 and 18, or an average per lane of 0.9 times the single-lane capacity.

PROCEDURE FOR ANALYSIS OF SIMULTANEOUS DOUBLE LEFT- AND DOUBLE RIGHT-TURNING MOVEMENTS USING A COMMON OPTIONAL LANE ON THE APPROACH: -

1. Calculate lane volume $V^{\prime}=\left(V_{2}+V_{3}\right) / 2.8$
2. Determine G/C required

IN CHART 18-B USING $V^{\prime}=C_{D 2}$ OR C_{03}
3. FOR ANY OTHER, AVAILABLE G/C FIND

DESIGN CAPACITY OF COMBINED
MOVEMENT BY MULTIPLYING
$\left(V_{2}+V_{3}\right)$ BY RATIO OF AVAILABLE
G/C to required G/C

3-LANE APPROACH
CENTER LANE OPTIONAL

Figure 12.-Combined double left-turning and double right-turning movements with optional lane.

2-Lane Turning Movements

Where the eapacity of a right- or loft-tum lane is insufficient to hande the demand rolume. the use of a double turning lane should be comsidered. This may be on two exchusive lanes, or on one exclusive lane and a seeond optional lane; the optional lane simultameonsly would be aceommodating a through or a right-turning movement. Only the general case of the double turning lune is covered in the Mamual. A rational method for evaluation of capacilies of z-lane turning movements with different angles of turn and entry widths on intersecting road is developed here for design purposes.

This pertains to at turn at or near 90 degrees and with sufficient width arailable for each line of vehicles throughout the turn. The capacity of the double turning movement is sensitive to the angle of turn, so that for acute-angle turns of more than 90 degrees, the capacity is reduced, and for obtuse-angle turns of less than 90 degrees, the capacity is increased. This sensitivity to angle of turn may be expressed by a factor of less than or more than 0.90 .

At some angle of turn flatter than 90 degrees, the full efficiency of the second lane will be achieved so that the 0.90 factor will become 1.00. Noreover, at an extremely flat angle of turn with chamelization, the capacity of the
movement will approximate the capacity a usual 2 -lane intersection approach as rejesented in charts 3 and 4 and 7-9. To ach: some corrclation between turning lane cappi ties and regular intersection approach a pacities, an adjustment factor of 1.10 has t selected for angles of turn of 4.5 degreeser less. For an intermediate angle of 60 degres factor of 1.00 is designated. On the other hed for an acute angle of 120 degrees the indict? adjustment factor is 0.80 . Because a doue turn movement is usually designed to hatio relatively large turning volumes free 0 pedestrian interference, the capacity for h high-type design, chart $18-\mathrm{B}$, is geneif applicable. The value for a single lane f_{11} chart $18-\mathrm{B}$, therefore, is first determined bir then multiplied by a factor of 0.80 to 1.10 , le pending on the turning angle, to produce hi design capacity of a double right- or left- in lane.

Another characteristic of a 2 -abreast tur ne movement that affects its traffic carrne capabilities is the lateral space available 20 turning, which determines whether the dil feels a sense of restriction or freedom. Atl beginning of the turn the capacity is contric by the width of approach lanes, $10,11, \mathrm{c} 1$. feet. Turning lanes wider than 12 feet on he approach are considered to have the sm capacity as 12 -foot lanes. Upon complent the turn, the capacity is controlled by hir width available for the 2 lanes at the farme of the turn or by the entrance width for the mit on the street receiving the turn, as represe ad by W_{E} on the right-hand side of figurc1l. Experience shows that approximately a 3 . width is required at this point to assure bre freedom of movement necessary to realize be full capacity of the double turn. An entric width of 36 feet or more is considered ital the adjustment factor therefore is 1.00 . Vive for W_{E} of 30 and 24 feet are assumed to smaller capacities, expressed by adjustr: factors of 0.90 and 0.80 respectively. T factors combine as a product with those previously for the angle of turn, so thaf fi: $\Delta=45^{\circ}$ and $W_{E}=36$, the composite file is $1.10 \times 1.00=1.10$, and for $\Delta=120^{\circ}$ $W_{E}=24$ the composite factor is $0.80 \times 0.80=.61$. These factors are applied to twice the dien capacity of a single lane and are indicati the range of values applicable to desie intersections.

Capacity relations as affected by the triing angle, Δ, and the cross-street entr width, W_{E}, are shown in the nomoglth. Thus, by using the design capacity for a s st. lane in chart $18-\mathrm{B}$, the design capacity (oik of the double right- or left-turn lane is f.n directly in the chart of figure 11.

Problem 33

What is the design capacity and post capacity of a double left-turning lane 222^{2} wide on the approach, two 11 -foot lie. where the angle of turn is 75 degrees andia traveled way, W_{E}, on the cross street recein the turn is 33 feet wide? Other conditions trucks comprise 17% of the turning mover and the G / C available for the moveme is 0.60 .

NOTE

Local buses are to be included in determining overall percentage of trucks and buses (T) on

$F_{B}=$ LOCAL BUS FACTOR

DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS LOCAL BUS FACTOR

FOR USE IN CONJUNCTION WITH CHARTS $3-14$
CHART 16

Figure 13.-Capacity of T or Y intersections.

Solution: The design capacity of single left-turn latue in Chart 18-B, using $G / C=$ 0. $60, a=11$ and $T_{3}=17 \%$, is $C_{D 3}=530$ v.p.h. Fintering with this value in the chart of figure 11, and applying $\Delta=75^{\circ}$ and $W_{E}=33$, the design capacity of the double left-turn lane is found to be $C_{D D}=9 \overline{5}()$ v.p.h. Possible c:apacity $C_{P D}=950 \times 1.30=1,240$ r.p.h.
2-abreast turning movement on 1 exclusive lane and on second optional lane

To achieve this, the intended operation should be designated by appropriate pavement marking and signing. Where the optional lane is shared by turning and through traffic, the following jrocedure should be followed:
(1) Determine the design capacity of the exchusive turning lane ($C_{D 2}$ or $C_{D 3}$) in chart is.
(2) Deduct the design eapacity of the thrning lane from the total turning volume $\left(\mathrm{F}_{3}-C_{D 3}\right)$ or $\left(\mathrm{I}_{2}-C_{\mathrm{D} 2}\right)$
(3) Determine the design capacity of the remainder of the approteh roadway $\left(W^{\prime}{ }_{A}\right)$ of which the optional lane is a part.
(4) The through volume plus $\left(\mathrm{F}_{3}-C_{D 3}\right)$ or ($\mathrm{T}_{2}-C_{L_{2}}$) should not exeeed the design (:apacity for approach width $W^{\prime \prime}$ A.

Where the optional lame is shared by a leftand a right-turning movement at a chatmelized intersection, ats is often the case on ramp terminals of diamond and parclo interchanges, the procedure for analysis is outlined in figure 12. The formula shown in the figure allows for
determination of the required G / C to accommodate the combined V_{2} and V_{5} volumes at design capacity by the use of chart 18-B. The formula is predicated on the condution where each of the 2 outer lanes discharges the usual volume of a turning lane at design capacity, while the middle lane discharges its share of the combined remaining left- and right-turning traffic at 0.8 design capacity. This assumes adequate radius and ample width for the double right-turning movement and a turning angle of 90 degrees or less with fully adequate exit width for the double left-turning movement. The design capacity of the combined movement for any other available G / C may be found by multiplying $\mathrm{I}_{2}+V_{3}$ by the ratio of available G / C to required G / C.

T and Y Intersections

The capacity of the approach of an intercopeded street at T and Y intersections, as the (east approach in figure 14, may be obtained in accordance with the procedure outlined in figure 13 , using charts $3-15$ in combination with the nomograph in figure 13. Because the capacity studies reported in the Manual do not include direct measurements at T and Y intersections, a rational method was developed using the results from intersection approaches for the usual 4 -leg intersections. As for the double turning lanes, the capacity of the
intercepted approach at T and V intersectius is affected by the angle of turn and the 1 trance width for the turn on the street joinl. Also, whether the right-turn volume or e left-turn volume is the predominant mo:ment should be considered.

Because all traffic on the intercepted proach is turning, the total discharge frn the approach-unless the angle of turn for te predominant movement is very favorabl would be less than for the approaches regular intersections indicated in charts 3Obviously, a double left-turn lane at a retlar intersection and a 2 -lane predominant ltturn movement on a T intersection, for same width and angle controls, would he similar capacities. Results for the two contions should be correlated, which is acenplished by equating, approximately, the hpacities of a double left-turn lanc with te capacities of a 2 -lane intercepted approachon T intersections with 100% of the tric turning left.

Averages of design and possible capaciks of double turning latues for angles of 120,0 , 60 , and 4.5 degrees were compared, ats a b e with arerages of design and possible cappacits of 2 -lane approaches from charts 4 and 9 or an intermediate range of metro area spe represented by 500,000 population. Ratiopf the two sets of values for the different anes of turn, serving as adjustment factors, whe found to be as follows:

Figure 11.-Problem 31 illustrated.
Δ, degrees, for
predominant
moverent $45 \quad 60 \quad 90 \quad 120$
Adjustment factor, rounded_...- $1.00 \quad 0.90 \quad 0.80 \quad 0.70$

The adjustment factor of 1.00 indicates a capacity on the intercepted approach (T or I intersection) equivalent to the full capacity of approach on a regular 4-leg intersection.

Thus, for a turning angle of 45 degrees or less for the predominant movement, the directness of the turn is assumed to yicld capacities of the order given in charts $3-15$. The preceding apply when the intersection approach is not deterred by the intersection exit; that is, the width of traveled way, W_{E}, receiving a 2-lane predominant movement, is equal to 3 lanes. The same adjustment factors of 1.00 , 0.90 and 0.80 , used for double turning lanes, are applied here for W_{E} of 36,30 , and 24 feet, respectively. The factors developed for 2-lane approaches are considered to be applicable to other widths of approach and other conditions including parking. The relations for T and Y intercepted approaches are presented in the nomograph in figure 13.

Problem 31

What are the design and possible capacities of the intercepted street (east approach), from which traffic can turn only left and right into the north-south street, for the conditions indicated in figure 14 ?

Solution: In chart 4 , using $W_{A}=20, T=$ $10 \%, L=0 \%, R=0 \%$ (because right turn is handled on separate right-turn lane), $M P=$ 500,000 population, and $G / C=0.45$, find $C_{D}=860$ v.p.h. Entering with this value in the chart of figure 13 , and applying $\Delta=80^{\circ}$ and $W_{E}=32$, the design capacity of the two lanes handling traffic to the left is $C_{D}=650$ v.p.h. The corresponding right-turn volume $=$ $650 \times 27 / 73=240$ v.p.h. The design capacity of the right-turn lane from chart $17-\mathrm{C}$ is 260 v.p.h. The volume on the approach that can be accommodated at design capacity $=650+$ $240=890$ v.p.h. The possible capacity of the
left-turn movement is $650 \times 1.20=780 \mathrm{v} . \mathrm{p}$. The corresponding right-turn volume $=780$. $27 / 73=290$ v.p.h. Possible capacity of rig)turn movement is $260 \times 1.30=340$ v.p.h. T volume on the approach that can be handid without exceeding possible capacity $=78{ }^{\circ}$ $290=1,070$ v.p.h.

Multiple-Type Intersections

The capacity of any form of signalized int section, regardless of the number of approeh roads and extent of channelization, can e obtained from the charts by examining erh approach road separately. The design of ectplex intersections, particularly those requirg multi-phase control, may necessitate soe study and trial solutions before determing the final plan. Multiple intersections of n present several possibilities in the patten of operation and in the number and arran? ment of signal phases. Such alternate arrangements may result in different geonbric layouts affecting the shape and locatn of islands, widths of parements, size of stori,e areas, and overall space requirements for e intersection. The geometric layout should e determined jointly with capacity analys. Care should be taken to check the length id width of those traffic channels where vehies will store during certain signal phases o preclude the condition of traffic backing p from one intersection point to another. We of advance or lagging green indications $: d$ appropriate offsets to produce progress e movements may be necessary in this reged. Time-space diagrams often are valuale adjuncts to the design procedure.

REFERENCES

Leisch, PUBLIC ROADS, A Journal of Highuay Research, vol. 26. No. 6, Feb. 1951, pp. 105-139.
(4) A Policy on Geometric Design of Rural Highways, by American Association of State Highway Officials, 1965.
(5) Capacity Study of Signatized Diamond Interchanges, by Donald G. Capelle and

Charles Pinnell, HRB Bulletin 291, Freery Design and Operations, publication $866,1(1$, pp. 1-25.
(6) Starting Delay and Time Spacinguf Vehicles Entering Signalized Intersection, y Richard M. Barkle, Val Skoro, and D.L. Gerlaugh, IR BB Bulletin 112, Effects of Traffic Control on Street Capacity, publation 365, 1956, pp. 33-41.

DESIGN CAPACITY OF SIGNALIZED INTERSECTIONS
SEPARATE RIGHT- AND LEFT-TURN LANES
WITH SEPARATE SIGNAL INDICATION FOR TURNING MOVEMENTS
the national system of interstate and defense highways
rats

A list of the more important articles in Public Roads and title eets for volumes 24-33 are available upon request addressed to ureau of Public Roads, Washington, D.C. 20235.
The following publications are sold by the Superintendent of ocuments, Government Printing Office, Washington, D.C. 20591. -ders should be sent direct to the Superintendent of Documents. 'epayment is required.

VNUAL REPORTS

mual Reports of the Bureau of Public Roads : 1960, 35 cents. 1963,35 cents. 1964,35 cents. 1965,40 cents. 1966, 75 cents. 1966 supplement, 25 cents.
(Other years are now out of print.)

EPORTS TO CONGRESS

deral Role in Highway Safety, House Document No. 93 (1959). 60 cents.
ghway Cost Allocation Study :
Supplementary Report, House Document No. 124 (1965). \$1.00. aximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems, House Document No. 354 (1964). 45 cents.
le 1965 Interstate System Cost Estimate, House Document No. 42 (1965). 20 cents.

JBLICATIONS

Quarter Century of Financing Municipal Highways, 1937-61, $\$ 1.00$.
cidents on Main Rural Highways-Related to Speed, Driver, and Vehicle (1964). 35 cents.
rgregate Gradation for Highways: Simplification, Standardization, and Uniform Application, and A New Graphical Evaluation Chart (1962). 25 cents.
aerica's Lifelines-Federal Aid for Highways (1966). 20 cents. librating and Testing a Gravity Model for Any Size Urban Areá (1965). \$1.00.
pacity Charts for the Hydraulic Design of Highway Culverts (Hydraulic Engineering Circular, No. 10) (1965). 65 cents. sign Charts for Open-Channel Flow (1961). 70 cents. :sign of Roadside Drainage Channels (1965). 40 cents. deral-Aid Highway Map (40×63 inches) (1965). \$1.50. deral Laws, Regulations, and Other Material Relating to Highways (1966). \$1.50.
eeways to Urban Development, A new concept for joint development (1966). 15 cents.
ghway Bond Financing . . . An Analysis, 1950-62. 35 cents. ghway Finance 1921-62 (a statistical review by the Office of Planning, Highway Statistics Division) (1964). 15 cents. ghway Planning Map Manual (1963). \$1.00.

PUBLICATIONS-Continued

Highway Planning Technical Reports-Creating, Organizing, and Reporting Highway Needs Studies (1964). 15 cents.
Highway Research and Development Studies, Using Federal-Aid Research and Planning Funds (1965). \$1.00.
Highway Statistics (published annually since 1945) : 1965, \$1.00.
(Other years out of print.)
Highway Statistics, Summary to 1965. \$1.25.
Highway Transportation Criteria in Zoning Law and Police Power and Planning Controls for Arterial Streets (1960). 35 cents.
Highways to Beauty (1966). 20 cents.
Highways and Economic and Social Changes (1964). \$1.25.
Increasing the Traffic-Carrying Capability of Urban Arterial Streets ; The Wisconsin Avenue Study (1962). Out of printRequest from Bureau of Public Roads. Appendix, 70 cents. Interstate System Route Log and Finder List (1963). 10 cents.
Labor Compliance Manual for Direct Federal and Federal-Aid Construction, 2d ed. (1965). \$1.75.
Landslide Investigations (1961). 30 cents.
Manual for Highway Severance Damage Studies (1961). \$1.00.
Manual on Uniform Traffic Control Devices for Streets and Highways (1961). $\$ 2.00$.
Part V-Traffic Controls for Highway Construction and Maintenance Operations (1963). 25 cents.
Opportunities for Young Engineers in the Bureau of Public Roads (1965). 30 cents.

Presplitting, A Controlled Blasting Technique for Rock Cuts (1967). 30 cents.

Reinforced Concrete Bridge Members-Ultimate Design (1966). 35 cents.
Reinforced Concrete Pipe Culverts-Criteria for Structural Design and Installation (1963). 30 cents.
Road-User and Property Taxes on Selected Motor Vehicles (1964). 45 cents.
Standard Plans for Highway Bridges (1962) :
Vol. III-Timber Bridges. $\$ 1.00$.
Vol. IV-Typical Continuous Bridges. \$1.00.
Vol. V-Typical Pedestrian Bridges. \$1.75.
Standard Traffic Control Signs Chart (as defined in the Manual on Uniform Traffic Control Devices for Streets and Highways) $22 \times 34,20$ cents- 100 for $\$ 15.00$. $11 \times 17,10$ cents- 100 for $\$ 5.00$.
The Identification of Rock Types (revised edition, 1960). 20 cents.
The Role of Economic Studies in Urban Transportation Planning (1965). 45 cents.

Traffic Assignment and Distribution for Small Urban Areas (1965). $\$ 1.00$.

Traffic Assignment Manual (1964). \$1.50.
Traffic Safety Services, Directory of National Organizations (1963). 15 cents.

Transition Curves for Highways (1940). \$1.75.

DIVISION OF PUBLIC DOCUMENTS
WASHINGTON. D.C. 20402
OFFICIAL BUSINESS

If you do not desire to continue to receive this publication, please check here tear off this label and return it to the above address. Your name will then be removed promptly from the appropriate mailing list.

[^0]: Public Roads, A Journal of Highway Research, is sold by the Sul intendent of Documents, Government Printing Office, Washingle. D.C. 20402, at $\$ 1.50$ per year (50 cents additional for foreign maile) or 25 cents per single copy. Subscriptions are available for 1 -, $2-$ 3 -year periods. Free distribution is limited to public officials an ally engaged in planning or constructing highways and to instruc of highway engineering. There are no vacancies in the free lisst present.

 Use of funds for printing this publication has been approved by Director of the Bureau of the Budget, March 16, 1966,

[^1]: Mr. Leisch was formerly Chief of Design Development Branch, Bureau of Public Roads. Mr. Leisch acknowledges the assistance of DONALD W. LOUTZENHEISER, WILLIAM P. WALKER, and DONALD B. LEWIS of the Bureau of Public Roads who provided guidance during preparation of the material and reviewed the completed work. JOEL P. LEISCH and ARNE HAALAND of DeLeuw, Cather \& Co. of Canada Limited also assisted in preparation of material and development of charts.
 ${ }^{2}$ References identified by italic numbers in parentheses are listed on p. 208.

[^2]: －Une Table 8 if PHF is known to
 lind odjuat foctor，otherwise use
 Population directiy．

[^3]: Use Table B if PHF is known
 to find ofjust. foctor; otherwise
 use Poopulation direcily. :

[^4]: TABLE B-ADJUSTMENT FOR
 METRO SIZE AND PHF

 \begin{tabular}{|l|l|l|l|l|}
 \hline POP ($\left.10000^{\prime}\right)$ \& 0.85 \& 0.90 \& 0.95

 \hline

 \hline POP ($\left.10000^{\prime} 0\right)$ \& 0.85 \& 0.90 \& 0.95

 \hline Over 1000 \& 1.14 \& 1.19 \& 1.24

 1000 \& 1.11 \& 1.16 \& 1.21

 750 \& 1.09 \& 1.14 \& 1.18

 \hline
 \end{tabular}

 | 500 | 1.06 | 1.14 | 1.18 |
 | :---: | :---: | :---: | :---: |
 | 250 | 1.00 | 1.05 | 1.10 |
 | 175 | 0.97 | 1.02 | 1.07 |
 | 100 | 0.94 | 0.99 | 1.04 |
 | 75 | 0.92 | 0.96 | 1.00 |

 * * Use Table B if PHF is known
 io find odust. foctor; otnerwise

[^5]: ${ }^{3}$ The nomograph is based on available but limited resect. Vehicles accommodated on left-turn lanes under compel? loaded conditions (1.00 load factor, representative of po thi capacity), as reported from operational studies hy I 4 . Capelle and C. Pinnell (5), can be expressed as: $N=4^{7}$ ($G-1.6$), where $N=$ number of passenger cars per cyele in $G=$ green interval in seconds. These findings are simi tur those of previous research by K. M. Bartle, V. Skor in D. L. Gerlough (6). Dividing the above expression bl.3. ratio of possible capacity to design capacity previs: established and substituting G_{A} as advance green for til. formula becomes $N=0.38$ ($G_{A}-1.6$). This relation was the: against results of operational studies, carried out by Sanson (1962) and by V. Mitranic (1967) in Toronto, eltturning movements on advance green indication. The st :by Capelle and P'innell, when reduced to design cap. U!, compare I favorably with the later studies which were ineer tive of normal or a verage peak-hour operations, particl:. for g_{A} values of 6 to 12 seconds. The nomograph in fig 11 is based on $N=0.38\left(G_{A}-1.6\right)$, with adjustments for t. and pedestrian interference as previously established.

